A review of deep learning for brain tumor analysis in MRI.

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2025-01-03 DOI:10.1038/s41698-024-00789-2
Felix J Dorfner, Jay B Patel, Jayashree Kalpathy-Cramer, Elizabeth R Gerstner, Christopher P Bridge
{"title":"A review of deep learning for brain tumor analysis in MRI.","authors":"Felix J Dorfner, Jay B Patel, Jayashree Kalpathy-Cramer, Elizabeth R Gerstner, Christopher P Bridge","doi":"10.1038/s41698-024-00789-2","DOIUrl":null,"url":null,"abstract":"<p><p>Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical applications. Within the analysis of brain tumors in magnetic resonance imaging, DL finds applications in tumor segmentation, quantification, and classification. It facilitates objective and reproducible measurements crucial for diagnosis, treatment planning, and disease monitoring. Furthermore, it holds the potential to pave the way for personalized medicine through the prediction of tumor type, grade, genetic mutations, and patient survival outcomes. In this review, we explore the transformative potential of DL for brain tumor care and discuss existing applications, limitations, and future directions and opportunities.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"2"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-024-00789-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical applications. Within the analysis of brain tumors in magnetic resonance imaging, DL finds applications in tumor segmentation, quantification, and classification. It facilitates objective and reproducible measurements crucial for diagnosis, treatment planning, and disease monitoring. Furthermore, it holds the potential to pave the way for personalized medicine through the prediction of tumor type, grade, genetic mutations, and patient survival outcomes. In this review, we explore the transformative potential of DL for brain tumor care and discuss existing applications, limitations, and future directions and opportunities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习在脑肿瘤MRI分析中的应用综述。
深度学习(DL)的最新进展正在为众多临床应用提供新一代工具。在磁共振成像对脑肿瘤的分析中,深度学习在肿瘤分割、量化和分类中得到了应用。它促进了对诊断、治疗计划和疾病监测至关重要的客观和可重复的测量。此外,它还具有通过预测肿瘤类型、分级、基因突变和患者生存结果为个性化医疗铺平道路的潜力。在这篇综述中,我们探讨了深度学习在脑肿瘤治疗中的变革潜力,并讨论了现有的应用、局限性以及未来的方向和机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging. Diversity of TCR repertoire predicts recurrence after CRT followed by durvalumab in patients with NSCLC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1