Electronic band evolution between Lieb and kagome nanoribbons.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-01-17 DOI:10.1088/1361-6528/ada569
E S Uchôa, W P Lima, S H R Sena, A J C Chaves, J M Pereira, D R da Costa
{"title":"Electronic band evolution between Lieb and kagome nanoribbons.","authors":"E S Uchôa, W P Lima, S H R Sena, A J C Chaves, J M Pereira, D R da Costa","doi":"10.1088/1361-6528/ada569","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric. We explore for different nanoribbon terminations: (i) the semiconductor-metallic transition due to the interconvertibility of the Lieb and kagome lattices, (ii) the effect of both nanoribbon width and inclusion of the next-nearest-neighbor hopping term on the degeneracy of the quasi-flat states, (iii) the behavior of the energy gap versus the nanoribbon width, (iv) the existence and evolution of edge states, and (v) the nodal spatial distributions of the total probability densities of the non-dispersive states.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada569","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric. We explore for different nanoribbon terminations: (i) the semiconductor-metallic transition due to the interconvertibility of the Lieb and kagome lattices, (ii) the effect of both nanoribbon width and inclusion of the next-nearest-neighbor hopping term on the degeneracy of the quasi-flat states, (iii) the behavior of the energy gap versus the nanoribbon width, (iv) the existence and evolution of edge states, and (v) the nodal spatial distributions of the total probability densities of the non-dispersive states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lieb纳米带与kagome纳米带电子带演化。
我们使用具有一般哈密顿量的紧密结合模型研究了由单层Lieb,过渡和kagome晶格制成的纳米带的电子特性。它允许我们通过仅一个控制参数来绘制Lieb和kagome纳米带之间相互转换过程的进化阶段。讨论了具有直边、胡须边和非对称边的纳米带的能谱、态密度和空间概率密度分布的结果。我们探索了不同的纳米带末端:(i)由于Lieb和kagome晶格的可交换性引起的半导体-金属跃迁,(ii)纳米带宽度和次近邻跳跃项的包含对准平坦态简并的影响,(iii)能隙对纳米带宽度的行为,(iv)边缘态的存在和演化,以及(v)非色散态总概率密度的节点空间分布。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Diamond nanoneedles for biosensing. The SiP nanotubes as potential metal-free photocatalyst: a density functional theory study. Highly sensitive refractive index sensing with a perfect MIM absorber in visible to near-infrared range. Atomic and molecular layer deposition on unconventional substrates: challenges and perspectives from energy applications. Hydrothermally designed Ag-modified TiO2heterogeneous nanocatalysts for efficient hydrogen evolution by photo/electro/photoelectro-chemical water splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1