MGB probe-based multiplex droplet digital PCR for the interspecific identification of Notopterygii Rhizoma et Radix in herbal materials and preparations.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2024-12-28 DOI:10.1016/j.phymed.2024.156325
Kai-Ling Xu, Zhong-Mou Zhang, Ya-Dan Wang, Xian-Long Cheng, Hong-Yu Jin, Feng Wei, Shuang-Cheng Ma
{"title":"MGB probe-based multiplex droplet digital PCR for the interspecific identification of Notopterygii Rhizoma et Radix in herbal materials and preparations.","authors":"Kai-Ling Xu, Zhong-Mou Zhang, Ya-Dan Wang, Xian-Long Cheng, Hong-Yu Jin, Feng Wei, Shuang-Cheng Ma","doi":"10.1016/j.phymed.2024.156325","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Owing to high sensitivity and ability for absolute quantification, the droplet digital polymerase chain reaction (ddPCR) is widely used for viral and bacterial detection. However, few studies have been conducted on the application of ddPCR to identify the original plant species used in traditional Chinese medicine and Chinese patent medicine.</p><p><strong>Purpose: </strong>In this study, we investigated the feasibility of using ddPCR to differentiate between Notopterygium incisum and N. franchetii to establish a sensitive and quantitative method for quality control of herbal materials and preparations.</p><p><strong>Methods: </strong>Specific minor groove binding (MGB) probes and primers were designed based on stable single nucleotide polymorphisms. The ddPCR experimental conditions were designed and optimised according to the results of multiplex PCR and qPCR, which ultimately confirmed the limits of detection and quantification (LOD and LOQ, respectively) of the method for Notopterygii Rhizoma et Radix. Additionally, the original plant species of Notopterygii Rhizoma et Radix in Jiuwei Qianghuo pills circulating in the market were identified.</p><p><strong>Results: </strong>The results of the multiplex PCR and qPCR indicated that the probes and primers were specific. Furthermore, a Qsep analyser and Sanger sequencing were used to confirm that the specific amplification products of N. incisum and N. franchetii were 283 and 206 bp, respectively. The optimised ddPCR system was employed to determine the LOD to be 0.000816 ng/µl, and LOQ of N. incisum and N. franchetii to be 0.00408 and 0.003312 ng/µl, respectively. In addition, Notopterygii Rhizoma et Radix in four Jiuwei Qianghuo pills was amplified and successfully identified using ddPCR assays.</p><p><strong>Conclusion: </strong>This study established a multiplex ddPCR method using MGB probes to identify Notopterygii Rhizoma et Radix, providing a foundation for the identification and quantification of multi-source Chinese herbal medicines.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"136 ","pages":"156325"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156325","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Owing to high sensitivity and ability for absolute quantification, the droplet digital polymerase chain reaction (ddPCR) is widely used for viral and bacterial detection. However, few studies have been conducted on the application of ddPCR to identify the original plant species used in traditional Chinese medicine and Chinese patent medicine.

Purpose: In this study, we investigated the feasibility of using ddPCR to differentiate between Notopterygium incisum and N. franchetii to establish a sensitive and quantitative method for quality control of herbal materials and preparations.

Methods: Specific minor groove binding (MGB) probes and primers were designed based on stable single nucleotide polymorphisms. The ddPCR experimental conditions were designed and optimised according to the results of multiplex PCR and qPCR, which ultimately confirmed the limits of detection and quantification (LOD and LOQ, respectively) of the method for Notopterygii Rhizoma et Radix. Additionally, the original plant species of Notopterygii Rhizoma et Radix in Jiuwei Qianghuo pills circulating in the market were identified.

Results: The results of the multiplex PCR and qPCR indicated that the probes and primers were specific. Furthermore, a Qsep analyser and Sanger sequencing were used to confirm that the specific amplification products of N. incisum and N. franchetii were 283 and 206 bp, respectively. The optimised ddPCR system was employed to determine the LOD to be 0.000816 ng/µl, and LOQ of N. incisum and N. franchetii to be 0.00408 and 0.003312 ng/µl, respectively. In addition, Notopterygii Rhizoma et Radix in four Jiuwei Qianghuo pills was amplified and successfully identified using ddPCR assays.

Conclusion: This study established a multiplex ddPCR method using MGB probes to identify Notopterygii Rhizoma et Radix, providing a foundation for the identification and quantification of multi-source Chinese herbal medicines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
Punicalagin inhibits excessive autophagy and improves cerebral function in neonatal rats with hypoxia-ischemia brain injury by regulating AKT-FOXO4. Salvianic acid A ameliorates atherosclerosis through metabolic-dependent anti-EndMT pathway and repression of TGF-β/ALK5 signaling. Effect of Tanreqing injection on multidrug resistance organisms: A test-negative case-control study and network pharmacology analysis. Recent advances in phytocompounds as potential Chikungunya virus non-structural protein 2 protease antagonists: A systematic review. Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1