Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2024-12-28 DOI:10.1016/j.phymed.2024.156352
Abdullah, Naveed Ahmad, Jie Xiao, Wenni Tian, Naveed Ullah Khan, Muhammad Hussain, Hafiz Muhammad Ahsan, Yahya Saud Hamed, Hao Zhong, Rongfa Guan
{"title":"Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms.","authors":"Abdullah, Naveed Ahmad, Jie Xiao, Wenni Tian, Naveed Ullah Khan, Muhammad Hussain, Hafiz Muhammad Ahsan, Yahya Saud Hamed, Hao Zhong, Rongfa Guan","doi":"10.1016/j.phymed.2024.156352","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.</p><p><strong>Purpose: </strong>This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.</p><p><strong>Method: </strong>Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms.</p><p><strong>Results: </strong>Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption.</p><p><strong>Conclusion: </strong>Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"136 ","pages":"156352"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156352","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.

Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.

Method: Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms.

Results: Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption.

Conclusion: Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
Salvianic acid A ameliorates atherosclerosis through metabolic-dependent anti-EndMT pathway and repression of TGF-β/ALK5 signaling. Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms. MGB probe-based multiplex droplet digital PCR for the interspecific identification of Notopterygii Rhizoma et Radix in herbal materials and preparations. Gastrodin: Modulating the xCT/GPX4 and ACSL4/LPCAT3 pathways to inhibit ferroptosis after ischemic stroke. Mechanism of Fangji Huangqi decoction against acute kidney injury based on network pharmacology and experimental validation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1