Enhancing chemotherapy response prediction via matched colorectal tumor-organoid gene expression analysis and network-based biomarker selection.

IF 4.5 2区 医学 Q1 ONCOLOGY Translational Oncology Pub Date : 2025-01-03 DOI:10.1016/j.tranon.2024.102238
Wei Zhang, Chao Wu, Hanchen Huang, Paulina Bleu, Wini Zambare, Janet Alvarez, Lily Wang, Philip B Paty, Paul B Romesser, J Joshua Smith, X Steven Chen
{"title":"Enhancing chemotherapy response prediction via matched colorectal tumor-organoid gene expression analysis and network-based biomarker selection.","authors":"Wei Zhang, Chao Wu, Hanchen Huang, Paulina Bleu, Wini Zambare, Janet Alvarez, Lily Wang, Philip B Paty, Paul B Romesser, J Joshua Smith, X Steven Chen","doi":"10.1016/j.tranon.2024.102238","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) presents significant challenges in chemotherapy response prediction due to its molecular heterogeneity. Current methods often fail to account for the complexity and variability inherent in individual tumors.</p><p><strong>Methods: </strong>We developed a novel approach using matched CRC tumor and organoid gene expression data. We applied Consensus Weighted Gene Co-expression Network Analysis (WGCNA) across three datasets: CRC tumors, matched organoids, and an independent organoid dataset with IC50 drug response values, to identify key gene modules and hub genes linked to chemotherapy response, particularly 5-fluorouracil (5-FU).</p><p><strong>Findings: </strong>Our integrative analysis identified significant gene modules and hub genes associated with CRC chemotherapy response. The predictive model built from these findings demonstrated superior accuracy over traditional methods when tested on independent datasets. The matched tumor-organoid data approach proved effective in capturing relevant biomarkers, enhancing prediction reliability.</p><p><strong>Interpretation: </strong>This study provides a robust framework for improving CRC chemotherapy response predictions by leveraging matched tumor and organoid gene expression data. Our approach addresses the limitations of previous methods, offering a promising strategy for personalized treatment planning in CRC. Future research should aim to validate these findings and explore the integration of more comprehensive drug response data.</p><p><strong>Funding: </strong>This research was supported by US National Cancer Institute grant R37CA248289, and Sylvester Comprehensive Cancer Center. which receives funding from the National Cancer Institute award P30CA240139. This work was supported by National Institutes of Health (NIH) under the following grants: T32CA009501-31A1 and R37CA248289. This work was also supported by the MSK P30CA008748 grant.</p>","PeriodicalId":23244,"journal":{"name":"Translational Oncology","volume":"52 ","pages":"102238"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tranon.2024.102238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) presents significant challenges in chemotherapy response prediction due to its molecular heterogeneity. Current methods often fail to account for the complexity and variability inherent in individual tumors.

Methods: We developed a novel approach using matched CRC tumor and organoid gene expression data. We applied Consensus Weighted Gene Co-expression Network Analysis (WGCNA) across three datasets: CRC tumors, matched organoids, and an independent organoid dataset with IC50 drug response values, to identify key gene modules and hub genes linked to chemotherapy response, particularly 5-fluorouracil (5-FU).

Findings: Our integrative analysis identified significant gene modules and hub genes associated with CRC chemotherapy response. The predictive model built from these findings demonstrated superior accuracy over traditional methods when tested on independent datasets. The matched tumor-organoid data approach proved effective in capturing relevant biomarkers, enhancing prediction reliability.

Interpretation: This study provides a robust framework for improving CRC chemotherapy response predictions by leveraging matched tumor and organoid gene expression data. Our approach addresses the limitations of previous methods, offering a promising strategy for personalized treatment planning in CRC. Future research should aim to validate these findings and explore the integration of more comprehensive drug response data.

Funding: This research was supported by US National Cancer Institute grant R37CA248289, and Sylvester Comprehensive Cancer Center. which receives funding from the National Cancer Institute award P30CA240139. This work was supported by National Institutes of Health (NIH) under the following grants: T32CA009501-31A1 and R37CA248289. This work was also supported by the MSK P30CA008748 grant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Oncology
Translational Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
7.20
自引率
2.00%
发文量
314
审稿时长
6-12 weeks
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
期刊最新文献
Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications. Enhancing chemotherapy response prediction via matched colorectal tumor-organoid gene expression analysis and network-based biomarker selection. TNG908 is a brain-penetrant, MTA-cooperative PRMT5 inhibitor developed for the treatment of MTAP-deleted cancers. Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study. ATM in immunobiology: From lymphocyte development to cancer immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1