Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY Human Cell Pub Date : 2025-01-03 DOI:10.1007/s13577-024-01171-x
Zhenshuo Chen, Yunfei Luo, Jianping Liu
{"title":"Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications.","authors":"Zhenshuo Chen, Yunfei Luo, Jianping Liu","doi":"10.1007/s13577-024-01171-x","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications. Initially, we will discuss the characteristics, origin, and advantages of hAESCs in differentiating into insulin-secreting cells. Subsequently, we will focus on the potential applications of hAESCs in treating diabetes complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy, etc. We will scrutinize the progress of relevant clinical studies and trials involving hAESC therapy. In conclusion, as an emerging diabetes treatment method, hAESCs exhibit immense potential and application value. Despite numerous challenges in practical application, we are confident that with scientific advancement and technological progress, hAESCs will play a pivotal role in treating diabetes and its related complications.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 2","pages":"39"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01171-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications. Initially, we will discuss the characteristics, origin, and advantages of hAESCs in differentiating into insulin-secreting cells. Subsequently, we will focus on the potential applications of hAESCs in treating diabetes complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy, etc. We will scrutinize the progress of relevant clinical studies and trials involving hAESC therapy. In conclusion, as an emerging diabetes treatment method, hAESCs exhibit immense potential and application value. Despite numerous challenges in practical application, we are confident that with scientific advancement and technological progress, hAESCs will play a pivotal role in treating diabetes and its related complications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人羊膜上皮干细胞,糖尿病及其相关并发症的潜在治疗方法。
随着糖尿病患病率的不断上升,人们对这种疾病及其并发症的创新治疗策略越来越感兴趣。人羊膜上皮干细胞(HAESCs)起源于离胎儿最近的胎盘最内层,在羊膜脐带附着区表达干细胞标记物,引起了人们的广泛关注。本文综述了hAESCs在治疗糖尿病及其并发症方面的最新研究进展和潜在应用价值。首先,我们将讨论hAESCs向胰岛素分泌细胞分化的特点、来源和优势。随后,我们将重点关注hAESCs在糖尿病并发症如糖尿病视网膜病变、糖尿病肾病、糖尿病神经病变等方面的潜在应用。我们将仔细研究涉及hAESC治疗的相关临床研究和试验进展。总之,hAESCs作为一种新兴的糖尿病治疗方法,具有巨大的潜力和应用价值。尽管在实际应用中存在诸多挑战,但我们相信,随着科学技术的进步,hAESCs将在糖尿病及其相关并发症的治疗中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
期刊最新文献
The role of RhoA-ROCK signaling in benign prostatic hyperplasia: a review. Establishment of a human ovarian endometrioid carcinoma cell line by constitutive expression of cyclin-dependent kinase 4, cyclin D1 and telomerase reverse transcriptase. Nimodipine ameliorates subarachnoid hemorrhage-induced neuroinflammation and injury by protecting mitochondrial function and regulating autophagy. The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond. Inhibitory effects of the combination of rapamycin with gemcitabine plus paclitaxel on the growth of pancreatic cancer tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1