{"title":"Data and AI-driven synthetic binding protein discovery.","authors":"Yanlin Li, Zixin Duan, Zhenwen Li, Weiwei Xue","doi":"10.1016/j.tips.2024.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic binding proteins (SBPs) are a class of protein binders that are artificially created and do not exist naturally. Their broad applications in tackling challenges of research, diagnostics, and therapeutics have garnered significant interest. Traditional protein engineering is pivotal to the discovery of SBPs. Recently, this discovery has been significantly accelerated by computational approaches, such as molecular modeling and artificial intelligence (AI). Furthermore, while numerous bioinformatics databases offer a wealth of resources that fuel SBP discovery, the full potential of these data has not yet been fully exploited. In this review, we present a comprehensive overview of SBP data ecosystem and methodologies in SBP discovery, highlighting the critical role of high-quality data and AI technologies in accelerating the discovery of innovative SBPs with promising applications in pharmacological sciences.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2024.12.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic binding proteins (SBPs) are a class of protein binders that are artificially created and do not exist naturally. Their broad applications in tackling challenges of research, diagnostics, and therapeutics have garnered significant interest. Traditional protein engineering is pivotal to the discovery of SBPs. Recently, this discovery has been significantly accelerated by computational approaches, such as molecular modeling and artificial intelligence (AI). Furthermore, while numerous bioinformatics databases offer a wealth of resources that fuel SBP discovery, the full potential of these data has not yet been fully exploited. In this review, we present a comprehensive overview of SBP data ecosystem and methodologies in SBP discovery, highlighting the critical role of high-quality data and AI technologies in accelerating the discovery of innovative SBPs with promising applications in pharmacological sciences.
期刊介绍:
Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research.
The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics.
Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles.
Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.