Tao Li, Chunze Zhang, Guibin Zhang, Qin Zhou, Ji Hou, Wei Diao, Wanwan Meng, Xujin Zhang
{"title":"Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks.","authors":"Tao Li, Chunze Zhang, Guibin Zhang, Qin Zhou, Ji Hou, Wei Diao, Wanwan Meng, Xujin Zhang","doi":"10.1088/1748-3190/ada59c","DOIUrl":null,"url":null,"abstract":"<p><p>The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics has emerged and been applied to simulate the fish's adaptive swimming behaviour, where the complex fish behaviour is decoupled to focus on the fish's response to the hydrodynamic field, and the simulation is driven by reward-based objectives to model the fish's swimming behaviour. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model. To promote it to more general application scenarios, there is a pressing need for further research on more efficient and economical network architectures to address the challenge of approximating state-value function in high-dimensional, dynamic, and uncertain environments. Building upon a previously proposed computational platform for the simulation of fish autonomous swimming behaviour, we integrated Kolmogorov-Arnold Networks(KANs) and tested their performance in point-to-point swimming and Kármán gait swimming environments. Experimental results demonstrated that, compared to long short-term memory Networks(LSTMs) and multilayer perceptron networks(MLPs), the introduction of KANs significantly enhanced the perception and decision-making abilities of the intelligent fish in complex fluid environments. With a smaller network scale, in the point-to-point swimming case, KANs effectively approximated the state-value function, achieving average reward improvements of up to 88.0% and 94.1% over MLPs and LSTMs networks, respectively, and increased by 766.7% and 105.6% in the Kármán gait swimming case. Under comparable network sizes, the intelligent fish with KANs exhibited faster learning capabilities and more stable swimming performance in complex fluid settings.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ada59c","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics has emerged and been applied to simulate the fish's adaptive swimming behaviour, where the complex fish behaviour is decoupled to focus on the fish's response to the hydrodynamic field, and the simulation is driven by reward-based objectives to model the fish's swimming behaviour. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model. To promote it to more general application scenarios, there is a pressing need for further research on more efficient and economical network architectures to address the challenge of approximating state-value function in high-dimensional, dynamic, and uncertain environments. Building upon a previously proposed computational platform for the simulation of fish autonomous swimming behaviour, we integrated Kolmogorov-Arnold Networks(KANs) and tested their performance in point-to-point swimming and Kármán gait swimming environments. Experimental results demonstrated that, compared to long short-term memory Networks(LSTMs) and multilayer perceptron networks(MLPs), the introduction of KANs significantly enhanced the perception and decision-making abilities of the intelligent fish in complex fluid environments. With a smaller network scale, in the point-to-point swimming case, KANs effectively approximated the state-value function, achieving average reward improvements of up to 88.0% and 94.1% over MLPs and LSTMs networks, respectively, and increased by 766.7% and 105.6% in the Kármán gait swimming case. Under comparable network sizes, the intelligent fish with KANs exhibited faster learning capabilities and more stable swimming performance in complex fluid settings.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.