Alexander Ernest Winter, Janine Schoombie, Lelanie Smith
{"title":"A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight.","authors":"Alexander Ernest Winter, Janine Schoombie, Lelanie Smith","doi":"10.1088/1748-3190/adaff4","DOIUrl":null,"url":null,"abstract":"<p><p>Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adaff4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.