A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2025-02-21 DOI:10.1088/1748-3190/adaff4
Alexander Ernest Winter, Janine Schoombie, Lelanie Smith
{"title":"A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight.","authors":"Alexander Ernest Winter, Janine Schoombie, Lelanie Smith","doi":"10.1088/1748-3190/adaff4","DOIUrl":null,"url":null,"abstract":"<p><p>Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adaff4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight. Plant-inspired decentralized controller for robust orientation control of soft robotic manipulators. CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators. Using deep reinforcement learning to investigate stretch feedback during swimming of the lamprey. Flapping dynamics and wing flexibility enhance odor detection in blue bottle flies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1