{"title":"Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.","authors":"Sayaka Shimizu, Taisei Katayama, Nozomi Nishiumi, Masashi Tanimoto, Yukiko Kimura, Shin-Ichi Higashijima","doi":"10.1186/s40851-024-00247-8","DOIUrl":null,"url":null,"abstract":"<p><p>In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements. However, speed and strength of movement are not binary states, but rather fall on a continuum. This raises the question of whether any recruitment patterns exist within fast muscles, which constitute the majority of muscle cell mass. In the present study, we investigated activation patterns of trunk fast muscles during movements of varying speeds and strengths using larval zebrafish. We employed two complementary methods: calcium imaging and electrophysiology. The results obtained from both methods supported the conclusion that there are spatially-ordered recruitment patterns in fast muscle cells. During weaker/slower movements, only the lateral portion of fast muscle cells is recruited. As the speed or strength of the movements increases, more fast muscle cells are recruited in a spatially-ordered manner, progressively from lateral to medial. We also conducted anatomical studies to examine muscle fiber size. The results of those experiments indicated that muscle fiber size increases systematically from lateral to medial. Therefore, the spatially ordered recruitment of fast muscle fibers, progressing from lateral to medial, correlates with an increase in fiber size. These findings provide significant insights into the organization and function of fast muscles in larval zebrafish, illustrating how spatial recruitment and fiber size interact to optimize movement performance.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"11 1","pages":"1"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-024-00247-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements. However, speed and strength of movement are not binary states, but rather fall on a continuum. This raises the question of whether any recruitment patterns exist within fast muscles, which constitute the majority of muscle cell mass. In the present study, we investigated activation patterns of trunk fast muscles during movements of varying speeds and strengths using larval zebrafish. We employed two complementary methods: calcium imaging and electrophysiology. The results obtained from both methods supported the conclusion that there are spatially-ordered recruitment patterns in fast muscle cells. During weaker/slower movements, only the lateral portion of fast muscle cells is recruited. As the speed or strength of the movements increases, more fast muscle cells are recruited in a spatially-ordered manner, progressively from lateral to medial. We also conducted anatomical studies to examine muscle fiber size. The results of those experiments indicated that muscle fiber size increases systematically from lateral to medial. Therefore, the spatially ordered recruitment of fast muscle fibers, progressing from lateral to medial, correlates with an increase in fiber size. These findings provide significant insights into the organization and function of fast muscles in larval zebrafish, illustrating how spatial recruitment and fiber size interact to optimize movement performance.
Zoological LettersAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.60
自引率
0.00%
发文量
12
审稿时长
10 weeks
期刊介绍:
Zoological Letters is an open access journal that publishes new and important findings in the zoological sciences. As a sister journal to Zoological Science, Zoological Letters covers a wide range of basic fields of zoology, from taxonomy to bioinformatics. We also welcome submissions of paleontology reports as part of our effort to contribute to the development of new perspectives in evolutionary zoology. Our goal is to serve as a global publishing forum for fundamental researchers in all fields of zoology.