Marsilea: an intuitive generalized paradigm for composable visualizations

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2025-01-06 DOI:10.1186/s13059-024-03469-3
Yimin Zheng, Zhihang Zheng, André F. Rendeiro, Edwin Cheung
{"title":"Marsilea: an intuitive generalized paradigm for composable visualizations","authors":"Yimin Zheng, Zhihang Zheng, André F. Rendeiro, Edwin Cheung","doi":"10.1186/s13059-024-03469-3","DOIUrl":null,"url":null,"abstract":"Biological data visualization is challenged by the growing complexity of datasets. Traditional single-data plots or simple juxtapositions often fail to fully capture dataset intricacies and interrelations. To address this, we introduce “cross-layout,” a novel visualization paradigm that integrates multiple plot types in a cross-like structure, with a central main plot surrounded by secondary plots for enhanced contextualization and interrelation insights. We also introduce “Marsilea,” a Python-based implementation of cross-layout visualizations, available in both programmatic and web-based interfaces to support users of all experience levels. This paradigm and its implementation offer a customizable, intuitive approach to advance biological data visualization.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"24 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03469-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological data visualization is challenged by the growing complexity of datasets. Traditional single-data plots or simple juxtapositions often fail to fully capture dataset intricacies and interrelations. To address this, we introduce “cross-layout,” a novel visualization paradigm that integrates multiple plot types in a cross-like structure, with a central main plot surrounded by secondary plots for enhanced contextualization and interrelation insights. We also introduce “Marsilea,” a Python-based implementation of cross-layout visualizations, available in both programmatic and web-based interfaces to support users of all experience levels. This paradigm and its implementation offer a customizable, intuitive approach to advance biological data visualization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Marsilea:一个用于组合可视化的直观的通用范例
生物数据可视化受到数据集日益复杂的挑战。传统的单数据图或简单的并置往往不能完全捕捉数据集的复杂性和相互关系。为了解决这个问题,我们引入了“交叉布局”,这是一种新的可视化范式,它将多种情节类型集成在一个十字形结构中,中心的主要情节被次要情节包围,以增强语境化和相互关系的洞察力。我们还介绍了“Marsilea”,这是一个基于python的跨布局可视化实现,可在编程和基于web的界面中使用,以支持所有经验级别的用户。该范例及其实现提供了一种可定制的、直观的方法来推进生物数据可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
Predicting enviromically adapted varieties with big data. Deep-learning prediction of gene expression from personal genomes. The repetitive genome of the Ixodes ricinus tick reveals transposable elements have driven genome evolution in ticks. Global atlas of enhancer-promoter interactome in cotton genome revealed by profiling RNA-RNA spatial interactions. Unravelling the progression of the zebrafish primary body axis with reconstructed spatiotemporal transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1