Chisel tillage and moderate nitrogen fertilization enhance maize straw decomposition through microbial and enzymatic synergy in wheat–maize system

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2025-01-06 DOI:10.1007/s11104-024-07179-4
Houping Zhang, Jinghua Zhang, Qian Zhang, Yuanpeng Zhu, Zhichen Zhao, Yuncheng Liao, Weiyan Wang, Hao Feng, Xiaoxia Wen
{"title":"Chisel tillage and moderate nitrogen fertilization enhance maize straw decomposition through microbial and enzymatic synergy in wheat–maize system","authors":"Houping Zhang, Jinghua Zhang, Qian Zhang, Yuanpeng Zhu, Zhichen Zhao, Yuncheng Liao, Weiyan Wang, Hao Feng, Xiaoxia Wen","doi":"10.1007/s11104-024-07179-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>In the wheat–maize cropping system, the return of substantial maize straw to the field can hinder winter wheat germination and growth. This study aims to clarify the mechanisms that accelerate maize straw decomposition, thereby mitigating these effects.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study evaluated three tillage methods: zero tillage, chisel tillage, and plow tillage, and three nitrogen fertilization rates (180, 240, and 300 kg·N ha⁻<sup>1</sup>). It examined the relationships between straw decomposition rates and factors such as straw chemical composition, soil properties, enzyme activities, and microbial community.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>In this study, chisel tillage and 240 kg·N ha⁻<sup>1</sup> significantly improved soil properties and biological activity and promoted straw decomposition. The combination of chisel tillage and 240 kg N ha⁻<sup>1</sup> resulted in the highest rate of straw degradation of 52%. Chisel tillage significantly reduced easily degradable functional groups (methoxyl C and carbonyl C) and enhanced the activities of β-glucosidase, N-acetyl glucosaminidase, peroxidase, and polyphenol oxidase, as well as fungal diversity (<i>P</i> &lt; 0.05). Nitrogen fertilization further increased enzyme activity and the fungal Shannon index (<i>P</i> &lt; 0.05). <i>Proteobacteria</i> and <i>Ascomycota</i> were dominant phyla during the decomposition process, with microbial dominant order shifts linked to decomposition stages, straw chemical structure, and soil conditions. <i>Proteobacteria</i> contributed primarily to hydrolase activity, while <i>Mortierellomycota</i> were closely related to oxidative enzymes.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The finding reveals the principal drivers of maize straw decomposition and provide guidance for optimizing nitrogen fertilization strategies in conservation tillage systems to accelerate straw breakdown.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"37 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07179-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

In the wheat–maize cropping system, the return of substantial maize straw to the field can hinder winter wheat germination and growth. This study aims to clarify the mechanisms that accelerate maize straw decomposition, thereby mitigating these effects.

Methods

This study evaluated three tillage methods: zero tillage, chisel tillage, and plow tillage, and three nitrogen fertilization rates (180, 240, and 300 kg·N ha⁻1). It examined the relationships between straw decomposition rates and factors such as straw chemical composition, soil properties, enzyme activities, and microbial community.

Results

In this study, chisel tillage and 240 kg·N ha⁻1 significantly improved soil properties and biological activity and promoted straw decomposition. The combination of chisel tillage and 240 kg N ha⁻1 resulted in the highest rate of straw degradation of 52%. Chisel tillage significantly reduced easily degradable functional groups (methoxyl C and carbonyl C) and enhanced the activities of β-glucosidase, N-acetyl glucosaminidase, peroxidase, and polyphenol oxidase, as well as fungal diversity (P < 0.05). Nitrogen fertilization further increased enzyme activity and the fungal Shannon index (P < 0.05). Proteobacteria and Ascomycota were dominant phyla during the decomposition process, with microbial dominant order shifts linked to decomposition stages, straw chemical structure, and soil conditions. Proteobacteria contributed primarily to hydrolase activity, while Mortierellomycota were closely related to oxidative enzymes.

Conclusions

The finding reveals the principal drivers of maize straw decomposition and provide guidance for optimizing nitrogen fertilization strategies in conservation tillage systems to accelerate straw breakdown.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Changes in soil pH and nutrient stoichiometry alter the effects of litter addition on soil nitrogen transformations and nitrous oxide emissions Phosphorus-solubilizing Trichoderma strains: mechanisms to promote soybean growth and support sustainable agroecosystems Integrated transcriptome and metabolome analysis reveals the response mechanisms of soybean to aluminum toxicity Rhizophagus intraradices combined with Solanum nigrum for the remediation of soil highly contaminated with cadmium Physiological, metabolomic, morphological and root system architecture acclimation responses to drought in the African orphan millet white fonio (Digitaria exilis)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1