Selenium Interface Layers Boost High Mobility and Switch Ratios in van der Waals Electronics

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-01-06 DOI:10.1021/acs.nanolett.4c04467
Chi Zhang, Enlong Li, Caifang Gao, Ruixue Wang, Xinling Liu, Yu Liu, Feng Yuan, Wu Shi, Yen-Fu Lin, Junhao Chu, Wenwu Li
{"title":"Selenium Interface Layers Boost High Mobility and Switch Ratios in van der Waals Electronics","authors":"Chi Zhang, Enlong Li, Caifang Gao, Ruixue Wang, Xinling Liu, Yu Liu, Feng Yuan, Wu Shi, Yen-Fu Lin, Junhao Chu, Wenwu Li","doi":"10.1021/acs.nanolett.4c04467","DOIUrl":null,"url":null,"abstract":"Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS<sub>2</sub>) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS<sub>2</sub> transistor significantly decreases the off-state current with a substantial increase in the on-state current density. Notably, the mobility reaches 237 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, which is accompanied by an extraordinary current on/off ratio of 10<sup>11</sup> at 7 K. The theoretical calculations and noise analysis show that the improvement in device performance is ascribed to the Se protective layer, which effectively shields the semiconductor from direct exposure to high-energy metal particles, reducing the Schottky barrier and the number of defect states at the interface. Finally, Se sacrificial ReS<sub>2</sub> transistor-based versatile logic circuits including NAND and NOR logic are executed, which can be widely applied in integrated circuits.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"15 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04467","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS2) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS2 transistor significantly decreases the off-state current with a substantial increase in the on-state current density. Notably, the mobility reaches 237 cm2 V–1 s–1, which is accompanied by an extraordinary current on/off ratio of 1011 at 7 K. The theoretical calculations and noise analysis show that the improvement in device performance is ascribed to the Se protective layer, which effectively shields the semiconductor from direct exposure to high-energy metal particles, reducing the Schottky barrier and the number of defect states at the interface. Finally, Se sacrificial ReS2 transistor-based versatile logic circuits including NAND and NOR logic are executed, which can be widely applied in integrated circuits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Tracing the Origins of Calendar Aging in Si-Containing Lithium-Ion Batteries Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMn2O4 toward Long-Life Lithium-Ion Batteries Light vs Heat: Dissecting the De-intercalation in Photo-rechargeable Batteries Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries Crystallographic Customization of Zinc Anode for High Performance Aqueous Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1