E. Pargoletti, A. Vertova, A. Tricoli, A. Starvaggi, A.T. John, S. Minelli, M. Longhi, G. Cappelletti
{"title":"Boosting Gaseous Acetone Detection by Nanoheterojunctions of p-Type MWCNTs/PANI Integrated into 3D Flame-Synthesized n-Type ZnO","authors":"E. Pargoletti, A. Vertova, A. Tricoli, A. Starvaggi, A.T. John, S. Minelli, M. Longhi, G. Cappelletti","doi":"10.1021/acssensors.4c02708","DOIUrl":null,"url":null,"abstract":"Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing. We showcased novel nanocomposites prepared by integrating p-type MWCNTs/PANI into a porous 3D network of n-type ZnO nanoparticles, synthesized via flame spray pyrolysis, and varying the weight ratios between ZnO and MWCNTs/PANI (namely 1:1, 8:1, 32:1, 64:1). The 32:1 nanocomposite exhibited superior acetone selectivity over toluene and ethanol, resulting in promise even at room temperature. As such, a potential sensing mechanism was proposed, which involves nanoheterojunction formation between p-type MWCNTs/PANI and n-type ZnO, creating an accumulation layer that enhances the gas response. Moreover, the incorporation of MWCNTs improved the overall conductivity and carrier mobility. Hence, we believe that this work offers valuable insights for optimizing MWCNTs/PANI and ZnO nanocomposites for efficient, low-temperature, light-free gas sensors.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"4 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02708","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing. We showcased novel nanocomposites prepared by integrating p-type MWCNTs/PANI into a porous 3D network of n-type ZnO nanoparticles, synthesized via flame spray pyrolysis, and varying the weight ratios between ZnO and MWCNTs/PANI (namely 1:1, 8:1, 32:1, 64:1). The 32:1 nanocomposite exhibited superior acetone selectivity over toluene and ethanol, resulting in promise even at room temperature. As such, a potential sensing mechanism was proposed, which involves nanoheterojunction formation between p-type MWCNTs/PANI and n-type ZnO, creating an accumulation layer that enhances the gas response. Moreover, the incorporation of MWCNTs improved the overall conductivity and carrier mobility. Hence, we believe that this work offers valuable insights for optimizing MWCNTs/PANI and ZnO nanocomposites for efficient, low-temperature, light-free gas sensors.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.