Boosting Gaseous Acetone Detection by Nanoheterojunctions of p-Type MWCNTs/PANI Integrated into 3D Flame-Synthesized n-Type ZnO

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2025-01-05 DOI:10.1021/acssensors.4c02708
E. Pargoletti, A. Vertova, A. Tricoli, A. Starvaggi, A.T. John, S. Minelli, M. Longhi, G. Cappelletti
{"title":"Boosting Gaseous Acetone Detection by Nanoheterojunctions of p-Type MWCNTs/PANI Integrated into 3D Flame-Synthesized n-Type ZnO","authors":"E. Pargoletti, A. Vertova, A. Tricoli, A. Starvaggi, A.T. John, S. Minelli, M. Longhi, G. Cappelletti","doi":"10.1021/acssensors.4c02708","DOIUrl":null,"url":null,"abstract":"Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing. We showcased novel nanocomposites prepared by integrating p-type MWCNTs/PANI into a porous 3D network of n-type ZnO nanoparticles, synthesized via flame spray pyrolysis, and varying the weight ratios between ZnO and MWCNTs/PANI (namely 1:1, 8:1, 32:1, 64:1). The 32:1 nanocomposite exhibited superior acetone selectivity over toluene and ethanol, resulting in promise even at room temperature. As such, a potential sensing mechanism was proposed, which involves nanoheterojunction formation between p-type MWCNTs/PANI and n-type ZnO, creating an accumulation layer that enhances the gas response. Moreover, the incorporation of MWCNTs improved the overall conductivity and carrier mobility. Hence, we believe that this work offers valuable insights for optimizing MWCNTs/PANI and ZnO nanocomposites for efficient, low-temperature, light-free gas sensors.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"4 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02708","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing. We showcased novel nanocomposites prepared by integrating p-type MWCNTs/PANI into a porous 3D network of n-type ZnO nanoparticles, synthesized via flame spray pyrolysis, and varying the weight ratios between ZnO and MWCNTs/PANI (namely 1:1, 8:1, 32:1, 64:1). The 32:1 nanocomposite exhibited superior acetone selectivity over toluene and ethanol, resulting in promise even at room temperature. As such, a potential sensing mechanism was proposed, which involves nanoheterojunction formation between p-type MWCNTs/PANI and n-type ZnO, creating an accumulation layer that enhances the gas response. Moreover, the incorporation of MWCNTs improved the overall conductivity and carrier mobility. Hence, we believe that this work offers valuable insights for optimizing MWCNTs/PANI and ZnO nanocomposites for efficient, low-temperature, light-free gas sensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Accelerating Plasmonic Hydrogen Sensors for Inert Gas Environments by Transformer-Based Deep Learning Artificial Intelligence-Enabled Novel Atrial Fibrillation Diagnosis System Using 3D Pulse Perception Flexible Pressure Sensor Array Infection Diagnostics Enabled by Selective Adsorption of Breath-Based Biomarkers in Zr-Based Metal–Organic Frameworks Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects Electrolyte-Gated Ionic Transistor for Highly Sensitive and Selective Iontronic Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1