Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-01-06 DOI:10.1021/acsnano.4c12447
Zhijia Zhu, Yanxue Shang, Chukai Lin, Dongchen Zhang, Lili Ai, Youshan Li, Weihong Tan, Yanlan Liu, Zilong Zhao
{"title":"Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin","authors":"Zhijia Zhu, Yanxue Shang, Chukai Lin, Dongchen Zhang, Lili Ai, Youshan Li, Weihong Tan, Yanlan Liu, Zilong Zhao","doi":"10.1021/acsnano.4c12447","DOIUrl":null,"url":null,"abstract":"Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation. Systematic studies revealed that they achieved >6- and >5.5-fold higher intratumoral accumulations of doxorubicin than aptamer-based targeted nanodrugs at 6 and 120 h post intravenous injection, respectively. Based on high drug delivery efficacy, targeted covalent nanodrugs boosted doxorubicin-induced immunogenic cell death, activated antitumor immune responses and shrank the sizes of both primary and distant tumors, and displayed better therapeutic efficacy and less adverse effect than targeted nanodrugs and commercial Doxil in 4T1 syngeneic breast tumor model featuring an immunosuppressive microenvironment. By integrating the specificity of molecular recognition, the reactivity profile of diazirine and the accuracy of light manipulation with nanodrug supremacy, our targeted covalent nanodrugs could be expected as a longer-term and efficient strategy to improve anticancer therapeutic efficacy of chemotherapeutics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"76 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12447","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation. Systematic studies revealed that they achieved >6- and >5.5-fold higher intratumoral accumulations of doxorubicin than aptamer-based targeted nanodrugs at 6 and 120 h post intravenous injection, respectively. Based on high drug delivery efficacy, targeted covalent nanodrugs boosted doxorubicin-induced immunogenic cell death, activated antitumor immune responses and shrank the sizes of both primary and distant tumors, and displayed better therapeutic efficacy and less adverse effect than targeted nanodrugs and commercial Doxil in 4T1 syngeneic breast tumor model featuring an immunosuppressive microenvironment. By integrating the specificity of molecular recognition, the reactivity profile of diazirine and the accuracy of light manipulation with nanodrug supremacy, our targeted covalent nanodrugs could be expected as a longer-term and efficient strategy to improve anticancer therapeutic efficacy of chemotherapeutics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bio-Orchestration of Cellular Organization and Human-Preferred Sensory Texture in Cultured Meat Drug in Drug: Quorum Sensing Inhibitor in Star-Shaped Antibacterial Polypeptides for Inhibiting and Eradicating Corneal Bacterial Biofilms K+-Responsive Nanoparticles with Charge Reversal and Gating Synergistic Effects for Targeted Intracellular Bacteria Eradication Structure–Stability Relationships in Pt-Alloy Nanoparticles Using Identical-Location Four-Dimensional Scanning Transmission Electron Microscopy and Unsupervised Machine Learning Nanotwin-Induced Ferrimagnetism in an Antiferromagnetic Cr2O3 Thin Film on the SrTiO3 Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1