David Garcia Romero, Gerbrand Bontekoe, Jacopo Pinna, Lorenzo Di Mario, Carolina M. Ibarra‐Barreno, Jane Kardula, Gabor Ersek, Giuseppe Portale, Petra Rudolf, Maria Antonietta Loi
{"title":"80% Fill Factor in Organic Solar Cells with a Modified Nickel Oxide Interlayer","authors":"David Garcia Romero, Gerbrand Bontekoe, Jacopo Pinna, Lorenzo Di Mario, Carolina M. Ibarra‐Barreno, Jane Kardula, Gabor Ersek, Giuseppe Portale, Petra Rudolf, Maria Antonietta Loi","doi":"10.1002/aenm.202404981","DOIUrl":null,"url":null,"abstract":"The efficiency of organic solar cells has raised drastically in the past years. However, there is an undeniable lack of hole transport layers that can provide high carrier selectivity, low defect density, and high processing robustness, simultaneously. In this work, this issue is addressed by studying defect generation and surface passivation of nickel oxide (NiO<jats:sub>x</jats:sub>). It is revealed that the generation of high oxidation state species on NiO<jats:sub>x</jats:sub> surface lowers contact resistance but hinders charge extraction when employed as transport layer in organic solar cells. By using them as coordination centers, a straightforward surface modification strategy is implemented using (2‐(9H‐carbazol‐9‐yl)ethyl)phosphonic acid (2PACz) that enhances charge extraction and increases the solar cell efficiency from 11.46% to 17.12%. Additionally, the robustness of this modification across different deposition methods of the carbazole molecule is demonstrated. Finally, by fine‐tuning the Fermi level using various carbazole‐based molecules, and in particular with ((4‐(7H‐dibenzo[c,g]carbazol‐7‐yl)butyl)phosphonic acid (4PADCB), a power conversion efficiency of 17.29% is achieved, with an outstanding combination of a V<jats:sub>OC</jats:sub> of 0.888 V and a fill factor of 80%.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"21 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404981","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of organic solar cells has raised drastically in the past years. However, there is an undeniable lack of hole transport layers that can provide high carrier selectivity, low defect density, and high processing robustness, simultaneously. In this work, this issue is addressed by studying defect generation and surface passivation of nickel oxide (NiOx). It is revealed that the generation of high oxidation state species on NiOx surface lowers contact resistance but hinders charge extraction when employed as transport layer in organic solar cells. By using them as coordination centers, a straightforward surface modification strategy is implemented using (2‐(9H‐carbazol‐9‐yl)ethyl)phosphonic acid (2PACz) that enhances charge extraction and increases the solar cell efficiency from 11.46% to 17.12%. Additionally, the robustness of this modification across different deposition methods of the carbazole molecule is demonstrated. Finally, by fine‐tuning the Fermi level using various carbazole‐based molecules, and in particular with ((4‐(7H‐dibenzo[c,g]carbazol‐7‐yl)butyl)phosphonic acid (4PADCB), a power conversion efficiency of 17.29% is achieved, with an outstanding combination of a VOC of 0.888 V and a fill factor of 80%.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.