{"title":"Modeling and Simulation of AlPN/GaN High Electron Mobility Transistor","authors":"Husna Hamza, Anwar Jarndal","doi":"10.1002/adts.202401115","DOIUrl":null,"url":null,"abstract":"AlPN is a relatively new semiconductor alloy capable of providing high two‐dimensional electron gas Two‐Dimensional Electron Gas (2DEG) densities on the order of 1013 cm<jats:sup>−2</jats:sup> at a heterojunction interface with GaN. The phosphorus molar fraction can be adjusted to achieve lattice‐matched AlPN/GaN heterojunctions with strong spontaneous polarization. This consequently induces more electrons at the interface, resulting in lower sheet resistance compared to an AlGaN/GaN heterojunction, making AlPN an optimal barrier in high electron mobility transistors High Electron Mobility Transistors (HEMTs). In this work, an AlPN/GaN HEMT is simulated and compared with a corresponding AlGaN/GaN HEMT. The AlPN/GaN HEMT exhibits a maximum drain current density of 1.85 A/mm, which is double that of the AlGaN/GaN HEMT, enabling this device to achieve higher power densities at high frequencies. The AlPN/GaN HEMT shows a peak transconductance of 0.293 S/mm, more than three times higher than that of the AlGaN/GaN HEMT, which can be exploited for sensor applications, as the sensitivity of the HEMT is directly proportional to the transconductance. Furthermore, the AlPN/GaN HEMT attained a lower noise figure than the AlGaN/GaN HEMT, which is crucial for low‐noise amplifier design. Therefore, it is beneficial to improve the fabrication and growth techniques of AlPN devices for stable production.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"117 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
AlPN is a relatively new semiconductor alloy capable of providing high two‐dimensional electron gas Two‐Dimensional Electron Gas (2DEG) densities on the order of 1013 cm−2 at a heterojunction interface with GaN. The phosphorus molar fraction can be adjusted to achieve lattice‐matched AlPN/GaN heterojunctions with strong spontaneous polarization. This consequently induces more electrons at the interface, resulting in lower sheet resistance compared to an AlGaN/GaN heterojunction, making AlPN an optimal barrier in high electron mobility transistors High Electron Mobility Transistors (HEMTs). In this work, an AlPN/GaN HEMT is simulated and compared with a corresponding AlGaN/GaN HEMT. The AlPN/GaN HEMT exhibits a maximum drain current density of 1.85 A/mm, which is double that of the AlGaN/GaN HEMT, enabling this device to achieve higher power densities at high frequencies. The AlPN/GaN HEMT shows a peak transconductance of 0.293 S/mm, more than three times higher than that of the AlGaN/GaN HEMT, which can be exploited for sensor applications, as the sensitivity of the HEMT is directly proportional to the transconductance. Furthermore, the AlPN/GaN HEMT attained a lower noise figure than the AlGaN/GaN HEMT, which is crucial for low‐noise amplifier design. Therefore, it is beneficial to improve the fabrication and growth techniques of AlPN devices for stable production.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics