Muhammad Naeem Mustafa, Fakhar Hussain, Muzammil Hussain, Riaz Hussain, Khurshid Ayub, Shabbir Muhammad, Muhammad Usman Khan, Mudssra Ehsan, Muhammad Adnan
{"title":"Elucidating the Potential of Nonlinear Optical Behavior of Azo Dyes for Advanced Laser‐Based Technologies","authors":"Muhammad Naeem Mustafa, Fakhar Hussain, Muzammil Hussain, Riaz Hussain, Khurshid Ayub, Shabbir Muhammad, Muhammad Usman Khan, Mudssra Ehsan, Muhammad Adnan","doi":"10.1002/adts.202401202","DOIUrl":null,"url":null,"abstract":"Organic nonlinear optical materials have received immense attention owing to their extensive applications in optoelectronics and photonics. Nonlinear optical (NLO) materials are significant components of data processing devices, optical computing, optical fibers, modulators, sensors, ultra‐fast switches, and optical storage devices. Therefore, an effort is made to explore the electronic and NLO response of commercially available azo dyes such as Tartrazine (E102), Yellow 2G (E107), Sunset Yellow (E110), Azorubine (E122), Amaranth (E123), Ponceau 4R (E124), and Allura Red (E129) using density functional theory. Frontier molecular orbital analysis reveals that the azo dyes’ energy gap (E<jats:sub>H‐L</jats:sub>) ranges from 5.30 to 6.88 eV. E122 contains the narrowest bandgap of 5.30 eV compared to others. The total density‐of‐state and noncovalent interactions analyses confirm the charge transfer and type of interactions in various regions of the azo dyes. Molecular electrostatic potential maps reveal that the azo dyes are involved in significant charge distribution regions favourable for the enhancement of NLO response. Moreover, the highest first hyperpolarizability (<jats:italic>β<jats:sub>o</jats:sub></jats:italic>3ggn ) value of 4184.87 au is also observed for E122, making it a better candidate for high‐performance NLO material than others. Therefore, these results may advance the development of NLO materials for efficient laser‐based technologies.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"203 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Organic nonlinear optical materials have received immense attention owing to their extensive applications in optoelectronics and photonics. Nonlinear optical (NLO) materials are significant components of data processing devices, optical computing, optical fibers, modulators, sensors, ultra‐fast switches, and optical storage devices. Therefore, an effort is made to explore the electronic and NLO response of commercially available azo dyes such as Tartrazine (E102), Yellow 2G (E107), Sunset Yellow (E110), Azorubine (E122), Amaranth (E123), Ponceau 4R (E124), and Allura Red (E129) using density functional theory. Frontier molecular orbital analysis reveals that the azo dyes’ energy gap (EH‐L) ranges from 5.30 to 6.88 eV. E122 contains the narrowest bandgap of 5.30 eV compared to others. The total density‐of‐state and noncovalent interactions analyses confirm the charge transfer and type of interactions in various regions of the azo dyes. Molecular electrostatic potential maps reveal that the azo dyes are involved in significant charge distribution regions favourable for the enhancement of NLO response. Moreover, the highest first hyperpolarizability (βo3ggn ) value of 4184.87 au is also observed for E122, making it a better candidate for high‐performance NLO material than others. Therefore, these results may advance the development of NLO materials for efficient laser‐based technologies.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics