{"title":"Resolving the source of branch length variation in the Y chromosome phylogeny","authors":"Yaniv Swiel, Janet Kelso, Stéphane Peyrégne","doi":"10.1186/s13059-024-03468-4","DOIUrl":null,"url":null,"abstract":"Genetic variation in the non-recombining part of the human Y chromosome has provided important insight into the paternal history of human populations. However, a significant and yet unexplained branch length variation of Y chromosome lineages has been observed, notably amongst those that are highly diverged from the human reference Y chromosome. Understanding the origin of this variation, which has previously been attributed to changes in generation time, mutation rate, or efficacy of selection, is important for accurately reconstructing human evolutionary and demographic history. Here, we analyze Y chromosomes from present-day and ancient modern humans, as well as Neandertals, and show that branch length variation amongst human Y chromosomes cannot solely be explained by differences in demographic or biological processes. Instead, reference bias results in mutations being missed on Y chromosomes that are highly diverged from the reference used for alignment. We show that masking fast-evolving, highly divergent regions of the human Y chromosome mitigates the effect of this bias and enables more accurate determination of branch lengths in the Y chromosome phylogeny. We show that our approach allows us to estimate the age of ancient samples from Y chromosome sequence data and provide updated estimates for the time to the most recent common ancestor using the portion of the Y chromosome where the effect of reference bias is minimized.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"12 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03468-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic variation in the non-recombining part of the human Y chromosome has provided important insight into the paternal history of human populations. However, a significant and yet unexplained branch length variation of Y chromosome lineages has been observed, notably amongst those that are highly diverged from the human reference Y chromosome. Understanding the origin of this variation, which has previously been attributed to changes in generation time, mutation rate, or efficacy of selection, is important for accurately reconstructing human evolutionary and demographic history. Here, we analyze Y chromosomes from present-day and ancient modern humans, as well as Neandertals, and show that branch length variation amongst human Y chromosomes cannot solely be explained by differences in demographic or biological processes. Instead, reference bias results in mutations being missed on Y chromosomes that are highly diverged from the reference used for alignment. We show that masking fast-evolving, highly divergent regions of the human Y chromosome mitigates the effect of this bias and enables more accurate determination of branch lengths in the Y chromosome phylogeny. We show that our approach allows us to estimate the age of ancient samples from Y chromosome sequence data and provide updated estimates for the time to the most recent common ancestor using the portion of the Y chromosome where the effect of reference bias is minimized.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.