{"title":"Failure mechanisms of roadways with non-coplanar axial direction and stress space: True triaxial test and mechanical analysis","authors":"Zongyu Ma , Jianping Zuo","doi":"10.1016/j.ijmst.2024.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field. Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed. Different forms of failure characteristics occur in the roadway. In order to study the failure mechanism with different spatial characteristics, rock-like material specimens with holes in 9 different horizontal and vertical angles were designed. The true triaxial test system was used to carry out the test with the same loading path. The results show that the horizontal angle <span><math><mrow><mi>α</mi></mrow></math></span> and vertical angle <span><math><mrow><mi>β</mi></mrow></math></span> have a significant effect on the specimen strength, specimen rupture angle, and the form of spalling failure in the hole. The spatial angle leads to the formation of asymmetric heterotype V-notches in both sides within the hole. The asymmetry is evident in both the depth and extent of spalling. The strength of the specimen increases and then decreases with increasing vertical angle <span><math><mrow><mi>β</mi></mrow></math></span>. The rupture angle increases and then decreases with increasing horizontal angle <span><math><mrow><mi>α</mi></mrow></math></span> and increases with the increase of the vertical angle <span><math><mrow><mi>β</mi></mrow></math></span>. The stress analytical model of the specimen under three-dimensional compression was established. The distribution of principal stresses around the holes was theoretically analyzed. It is found that the presence of spatial angle changes the distribution of principal stresses around the hole from symmetric to asymmetric distribution. The shift of the principal stresses is responsible for the change from a V-notch to a heterotype V-notch.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 12","pages":"Pages 1711-1725"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209526862400171X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field. Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed. Different forms of failure characteristics occur in the roadway. In order to study the failure mechanism with different spatial characteristics, rock-like material specimens with holes in 9 different horizontal and vertical angles were designed. The true triaxial test system was used to carry out the test with the same loading path. The results show that the horizontal angle and vertical angle have a significant effect on the specimen strength, specimen rupture angle, and the form of spalling failure in the hole. The spatial angle leads to the formation of asymmetric heterotype V-notches in both sides within the hole. The asymmetry is evident in both the depth and extent of spalling. The strength of the specimen increases and then decreases with increasing vertical angle . The rupture angle increases and then decreases with increasing horizontal angle and increases with the increase of the vertical angle . The stress analytical model of the specimen under three-dimensional compression was established. The distribution of principal stresses around the holes was theoretically analyzed. It is found that the presence of spatial angle changes the distribution of principal stresses around the hole from symmetric to asymmetric distribution. The shift of the principal stresses is responsible for the change from a V-notch to a heterotype V-notch.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.