Louis Rihouey, Philippe Ben-Abdallah, Riccardo Messina
{"title":"Deep sub-wavelength scale focusing of heat flux radiated by magneto-optical nanoemitters in the presence of an external magnetic-field","authors":"Louis Rihouey, Philippe Ben-Abdallah, Riccardo Messina","doi":"10.1016/j.jqsrt.2024.109322","DOIUrl":null,"url":null,"abstract":"We introduce a theoretical framework to describe the heat flux radiated in the near-field regime by a set of magneto-optical thermal nanoemitters close to a substrate in the presence of an external magnetic field. Then, we investigate the particular case of a single emitter and we demonstrate that the external field can induce both an amplification of the heat exchanged between emittter and substrate and a focusing of the Poynting field at the substrate interface at deep sub-wavelength scale. These effects open up promising perspectives for the development of heat-assisted magnetic-recording technology.","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"27 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.jqsrt.2024.109322","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a theoretical framework to describe the heat flux radiated in the near-field regime by a set of magneto-optical thermal nanoemitters close to a substrate in the presence of an external magnetic field. Then, we investigate the particular case of a single emitter and we demonstrate that the external field can induce both an amplification of the heat exchanged between emittter and substrate and a focusing of the Poynting field at the substrate interface at deep sub-wavelength scale. These effects open up promising perspectives for the development of heat-assisted magnetic-recording technology.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.