Inverse Design of AlGaN/GaN HEMT RF Device with Source Connected Field Plate

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2025-01-06 DOI:10.1002/adts.202401207
Aurick Das, Saimur Rahman Arnab, Xiaofeng Xiang, Rafid Hassan Palash, Toiyob Hossain, Bejoy Sikder, Eiji Yagyu, Marika Nakamura, Koon Hoo Teo, Nadim Chowdhury
{"title":"Inverse Design of AlGaN/GaN HEMT RF Device with Source Connected Field Plate","authors":"Aurick Das, Saimur Rahman Arnab, Xiaofeng Xiang, Rafid Hassan Palash, Toiyob Hossain, Bejoy Sikder, Eiji Yagyu, Marika Nakamura, Koon Hoo Teo, Nadim Chowdhury","doi":"10.1002/adts.202401207","DOIUrl":null,"url":null,"abstract":"This study introduces a novel approach in the prediction, design, and optimization of Breakdown Voltage (BV) and Leakage Current in AlGaN/GaN High Electron Mobility Transistors (HEMTs) with a source-connected field plate (SCFP) using an Artificial Neural Network (ANN) model. For the first time, the concept of inverse design is applied to the HEMT structures, enabling the accurate prediction of structural parameters from key performance metrics. Additionally, a novel method for predicting current collapse based on the peak electric field in the access region is proposed, offering a faster alternative to traditional pulsed DC analysis. The electrical performance of the reference device is optimized through a unique approach that combines a genetic algorithm with the ANN model, incorporating data augmentation to ensure high accuracy. The ANN demonstrated exceptional precision, achieving an <span data-altimg=\"/cms/asset/c4863f7d-b2d8-454b-89d5-454791b33b35/adts202401207-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401207-math-0001.png\"><mjx-semantics><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401207:adts202401207-math-0001\" display=\"inline\" location=\"graphic/adts202401207-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup>${\\rm R}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> score of 99% and an error rate below 1%. To validate the model's predictions, TCAD simulations were performed on the Pareto-optimal solutions, yielding a minimum error rate of 1.67%. This work marks a significant step forward in applying machine learning to AlGaN/GaN HEMT device design, offering a novel, efficient alternative to traditional simulation methods and paving the way for a more energy-efficient device design process.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"294 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401207","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel approach in the prediction, design, and optimization of Breakdown Voltage (BV) and Leakage Current in AlGaN/GaN High Electron Mobility Transistors (HEMTs) with a source-connected field plate (SCFP) using an Artificial Neural Network (ANN) model. For the first time, the concept of inverse design is applied to the HEMT structures, enabling the accurate prediction of structural parameters from key performance metrics. Additionally, a novel method for predicting current collapse based on the peak electric field in the access region is proposed, offering a faster alternative to traditional pulsed DC analysis. The electrical performance of the reference device is optimized through a unique approach that combines a genetic algorithm with the ANN model, incorporating data augmentation to ensure high accuracy. The ANN demonstrated exceptional precision, achieving an R2${\rm R}^{2}$ score of 99% and an error rate below 1%. To validate the model's predictions, TCAD simulations were performed on the Pareto-optimal solutions, yielding a minimum error rate of 1.67%. This work marks a significant step forward in applying machine learning to AlGaN/GaN HEMT device design, offering a novel, efficient alternative to traditional simulation methods and paving the way for a more energy-efficient device design process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有源连接场板的AlGaN/GaN HEMT射频器件的反设计
本研究提出了一种基于人工神经网络(ANN)模型的AlGaN/GaN高电子迁移率晶体管(hemt)的击穿电压(BV)和泄漏电流的预测、设计和优化方法。首次将逆设计概念应用于HEMT结构,从而能够根据关键性能指标准确预测结构参数。此外,本文还提出了一种基于接入区的峰值电场预测电流坍塌的新方法,为传统的脉冲直流分析提供了一种更快的替代方法。参考装置的电气性能通过一种独特的方法进行优化,该方法将遗传算法与人工神经网络模型相结合,并结合数据增强以确保高精度。人工神经网络表现出优异的精度,实现了99%的R2${\rm R}^{2}$得分和低于1%的错误率。为了验证模型的预测,对pareto最优解进行了TCAD模拟,错误率最小为1.67%。这项工作标志着将机器学习应用于AlGaN/GaN HEMT器件设计的重要一步,为传统仿真方法提供了一种新颖、高效的替代方案,并为更节能的器件设计过程铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Decoding the High Efficiency of Cs₂SnI₆ Perovskite Solar Cells: A Comprehensive Study Through First-Principles Calculations and SCAPS Modeling Theoretical Revelation of Cu3BiS3-Based Thin Film PV Cell Exerting Various Carrier Transport Layers Behavior Identification of Silicone-Ethanol Soft Actuator Based on Statistical Analysis Integrative Enhancement of Energy‐Level Alignment and Defect Passivation for High‐Performance Lead‐Free Perovskite Solar Cells Numerical Analysis of Magnetohydrodynamics Mixed Convection and Entropy Generation in a Double Lid-Driven Cavity Using Ternary Hybrid Nanofluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1