The Hallmarks of Predictive Oncology

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2025-01-06 DOI:10.1158/2159-8290.cd-24-0760
Akshat Singhal, Xiaoyu Zhao, Patrick Wall, Emily So, Guido Calderini, Alexander Partin, Natasha Koussa, Priyanka Vasanthakumari, Oleksandr Narykov, Yitan Zhu, Sara E. Jones, Farnoosh Abbas-Aghababazadeh, Sisira Kadambat Nair, Jean-Christophe Bélisle-Pipon, Athmeya Jayaram, Barbara A. Parker, Kay T. Yeung, Jason I. Griffiths, Ryan Weil, Aritro Nath, Benjamin Haibe-Kains, Trey Ideker
{"title":"The Hallmarks of Predictive Oncology","authors":"Akshat Singhal, Xiaoyu Zhao, Patrick Wall, Emily So, Guido Calderini, Alexander Partin, Natasha Koussa, Priyanka Vasanthakumari, Oleksandr Narykov, Yitan Zhu, Sara E. Jones, Farnoosh Abbas-Aghababazadeh, Sisira Kadambat Nair, Jean-Christophe Bélisle-Pipon, Athmeya Jayaram, Barbara A. Parker, Kay T. Yeung, Jason I. Griffiths, Ryan Weil, Aritro Nath, Benjamin Haibe-Kains, Trey Ideker","doi":"10.1158/2159-8290.cd-24-0760","DOIUrl":null,"url":null,"abstract":"The rapid evolution of machine learning has led to a proliferation of sophisticated models for predicting therapeutic responses in cancer. While many of these show promise in research, standards for clinical evaluation and adoption are lacking. Here, we propose seven hallmarks by which predictive oncology models can be assessed and compared. These are Data Relevance and Actionability, Expressive Architecture, Standardized Benchmarking, Generalizability, Interpretability, Accessibility and Reproducibility, and Fairness. Considerations for each hallmark are discussed along with an example model scorecard. We encourage the broader community, including researchers, clinicians, and regulators, to engage in shaping these guidelines toward a concise set of standards. Significance: As the field of artificial intelligence evolves rapidly, these hallmarks are intended to capture fundamental, complementary concepts necessary for the progress and timely adoption of predictive modeling in precision oncology. Through these hallmarks, we hope to establish standards and guidelines that enable the symbiotic development of artificial intelligence and precision oncology.","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"48 1","pages":""},"PeriodicalIF":29.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.cd-24-0760","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of machine learning has led to a proliferation of sophisticated models for predicting therapeutic responses in cancer. While many of these show promise in research, standards for clinical evaluation and adoption are lacking. Here, we propose seven hallmarks by which predictive oncology models can be assessed and compared. These are Data Relevance and Actionability, Expressive Architecture, Standardized Benchmarking, Generalizability, Interpretability, Accessibility and Reproducibility, and Fairness. Considerations for each hallmark are discussed along with an example model scorecard. We encourage the broader community, including researchers, clinicians, and regulators, to engage in shaping these guidelines toward a concise set of standards. Significance: As the field of artificial intelligence evolves rapidly, these hallmarks are intended to capture fundamental, complementary concepts necessary for the progress and timely adoption of predictive modeling in precision oncology. Through these hallmarks, we hope to establish standards and guidelines that enable the symbiotic development of artificial intelligence and precision oncology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
Bone-Induced Her2 Promotes Secondary Metastasis in HR+/Her2- Breast Cancer. The FBXO45-GEF-H1 axis controls germinal center formation and B-cell lymphomagenesis PIN1 prolyl isomerase promotes initiation and progression of bladder cancer through the SREBP2-mediated cholesterol biosynthesis pathway Disparate Pathways for Extrachromosomal DNA Biogenesis and Genomic DNA Repair. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1