The galactokinase enzyme of yeast senses metabolic flux to stabilize galactose pathway regulation

IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Nature metabolism Pub Date : 2025-01-06 DOI:10.1038/s42255-024-01181-x
Julius Palme, Ang Li, Michael Springer
{"title":"The galactokinase enzyme of yeast senses metabolic flux to stabilize galactose pathway regulation","authors":"Julius Palme, Ang Li, Michael Springer","doi":"10.1038/s42255-024-01181-x","DOIUrl":null,"url":null,"abstract":"<p>Nutrient sensors allow cells to adapt their metabolisms to match nutrient availability by regulating metabolic pathway expression. Many such sensors are cytosolic receptors that measure intracellular nutrient concentrations. One might expect that inducing the metabolic pathway that degrades a nutrient would reduce intracellular nutrient levels, destabilizing induction. However, in the galactose-responsive (GAL) pathway of <i>Saccharomyces cerevisiae</i>, we find that induction is stabilized by flux sensing. Previously proposed mechanisms for flux sensing postulate the existence of metabolites whose concentrations correlate with flux. The GAL pathway flux sensor uses a different principle: the galactokinase Gal1p both performs the first step in GAL metabolism and reports on flux by signalling to the GAL repressor, Gal80p. Both Gal1p catalysis and Gal1p signalling depend on the concentration of the Gal1p–GAL complex and are therefore directly correlated. Given the simplicity of this mechanism, flux sensing is probably a general feature throughout metabolic regulation.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"15 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-024-01181-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Nutrient sensors allow cells to adapt their metabolisms to match nutrient availability by regulating metabolic pathway expression. Many such sensors are cytosolic receptors that measure intracellular nutrient concentrations. One might expect that inducing the metabolic pathway that degrades a nutrient would reduce intracellular nutrient levels, destabilizing induction. However, in the galactose-responsive (GAL) pathway of Saccharomyces cerevisiae, we find that induction is stabilized by flux sensing. Previously proposed mechanisms for flux sensing postulate the existence of metabolites whose concentrations correlate with flux. The GAL pathway flux sensor uses a different principle: the galactokinase Gal1p both performs the first step in GAL metabolism and reports on flux by signalling to the GAL repressor, Gal80p. Both Gal1p catalysis and Gal1p signalling depend on the concentration of the Gal1p–GAL complex and are therefore directly correlated. Given the simplicity of this mechanism, flux sensing is probably a general feature throughout metabolic regulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature metabolism
Nature metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
27.50
自引率
2.40%
发文量
170
期刊介绍: Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.
期刊最新文献
Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut–liver axis Cellular and organismal function of choline metabolism Career pathways, part 16 The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair Making sense of gene expression control by flux sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1