Thermodynamics of Microbial Decomposition of Persistent Carbon in Erosion-Buried Topsoils

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-01-06 DOI:10.1016/j.soilbio.2025.109710
A.D. Mitchell, Helgason B.L
{"title":"Thermodynamics of Microbial Decomposition of Persistent Carbon in Erosion-Buried Topsoils","authors":"A.D. Mitchell, Helgason B.L","doi":"10.1016/j.soilbio.2025.109710","DOIUrl":null,"url":null,"abstract":"Hillslope erosion in hummocky landscapes can lead to the accumulation of C-rich topsoil in depositional positions that eventually becomes buried if erosion persists. Our objective in this study was to evaluate the persistence of SOC and the thermodynamic efficiency of the microbial community in C-rich buried surface horizons from five sites with varied texture and organic matter contents. Surface Ah (0-10 cm) and buried surface (Ahb) horizons were isolated from intact cores, sieved (&lt;2 mm) and incubated under ideal conditions of temperature and moisture. Ahb soils had an average organic C content (25.6 mg OC g<sup>-1</sup> soil) similar to the corresponding Ah soil (30.9 mg OC g<sup>-1</sup> soil). Using isothermal calorimetry, we determined that Ah horizons produced significantly more heat and CO<sub>2</sub> but had smaller calorespirometric ratios than Ahb soils, under both basal (841 vs 3106 kJ mol<sup>-1</sup> CO<sub>2</sub>-C) and glucose metabolism (627 vs. 697 kJ mol<sup>-1</sup> CO<sub>2</sub>-C).100-day basal respiration was nearly four times greater in Ah vs. Ahb horizons. While MAOM correlated with basal heat production in both horizons, it only correlated with C persistence in the Ah horizons (Rho = 0.67, p &lt; 0.01), suggesting variability in C persistence was not primarily driven by organo-mineral bonds in Ahb horizons, although energy use efficiency is. Microbial community structure in Ahb horizons was distinct from the surface soils, and changed minimally during incubation, suggesting co-development of the community as decomposition proceeded over the decades of burial, leading to persistent C. These relatively large volume buried surface soils may provide unique opportunities to understand microbial hotspot C processes that are typically difficult to isolate at a spatially explicit scale (e.g., an aggregate interior). We propose that the co-development of distinct microbial communities in C-rich buried horizons leads to more thermally stable SOC, but further research is required to test this hypothesis.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"21 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109710","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hillslope erosion in hummocky landscapes can lead to the accumulation of C-rich topsoil in depositional positions that eventually becomes buried if erosion persists. Our objective in this study was to evaluate the persistence of SOC and the thermodynamic efficiency of the microbial community in C-rich buried surface horizons from five sites with varied texture and organic matter contents. Surface Ah (0-10 cm) and buried surface (Ahb) horizons were isolated from intact cores, sieved (<2 mm) and incubated under ideal conditions of temperature and moisture. Ahb soils had an average organic C content (25.6 mg OC g-1 soil) similar to the corresponding Ah soil (30.9 mg OC g-1 soil). Using isothermal calorimetry, we determined that Ah horizons produced significantly more heat and CO2 but had smaller calorespirometric ratios than Ahb soils, under both basal (841 vs 3106 kJ mol-1 CO2-C) and glucose metabolism (627 vs. 697 kJ mol-1 CO2-C).100-day basal respiration was nearly four times greater in Ah vs. Ahb horizons. While MAOM correlated with basal heat production in both horizons, it only correlated with C persistence in the Ah horizons (Rho = 0.67, p < 0.01), suggesting variability in C persistence was not primarily driven by organo-mineral bonds in Ahb horizons, although energy use efficiency is. Microbial community structure in Ahb horizons was distinct from the surface soils, and changed minimally during incubation, suggesting co-development of the community as decomposition proceeded over the decades of burial, leading to persistent C. These relatively large volume buried surface soils may provide unique opportunities to understand microbial hotspot C processes that are typically difficult to isolate at a spatially explicit scale (e.g., an aggregate interior). We propose that the co-development of distinct microbial communities in C-rich buried horizons leads to more thermally stable SOC, but further research is required to test this hypothesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Thermodynamics of Microbial Decomposition of Persistent Carbon in Erosion-Buried Topsoils Context-dependent contributions of arbuscular mycorrhizal fungi to host performance under global change factors Soil pH promoted respiration is stimulated by exoenzyme kinetic properties for a Pinus tabuliformis forest of northern China Heterotrophic nitrification in soils: approaches and mechanisms Multitrophic interactions support belowground carbon sequestration through microbial necromass accumulation in dryland biocrusts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1