William Loh, David Reens, Dave Kharas, Alkesh Sumant, Connor Belanger, Ryan T. Maxson, Alexander Medeiros, William Setzer, Dodd Gray, Kyle DeBry, Colin D. Bruzewicz, Jason Plant, John Liddell, Gavin N. West, Sagar Doshi, Matthew Roychowdhury, May E. Kim, Danielle Braje, Paul W. Juodawlkis, John Chiaverini, Robert McConnell
{"title":"Optical atomic clock interrogation using an integrated spiral cavity laser","authors":"William Loh, David Reens, Dave Kharas, Alkesh Sumant, Connor Belanger, Ryan T. Maxson, Alexander Medeiros, William Setzer, Dodd Gray, Kyle DeBry, Colin D. Bruzewicz, Jason Plant, John Liddell, Gavin N. West, Sagar Doshi, Matthew Roychowdhury, May E. Kim, Danielle Braje, Paul W. Juodawlkis, John Chiaverini, Robert McConnell","doi":"10.1038/s41566-024-01588-8","DOIUrl":null,"url":null,"abstract":"<p>Optical atomic clocks have demonstrated revolutionary advances in precision timekeeping, but their applicability to the real world is critically dependent on whether such clocks can operate outside the laboratory. Photonic integration offers one compelling solution to address the miniaturization and ruggedization needed to enable clock portability, but brings with it a new set of challenges in recreating the functionality of an optical clock using chip-scale building blocks. The clock laser used for atom interrogation is one particular point of uncertainty, as the performance of the meticulously engineered bulk-cavity-stabilized lasers would be exceptionally difficult to transfer to chip. Here we demonstrate that an integrated ultrahigh-quality-factor spiral cavity, when interfaced with a 1,348 nm seed laser, is able to reach a fractional frequency instability of 7.5 × 10<sup>−14</sup> on chip. On frequency doubling the light to 674 nm, we use this laser to interrogate the narrow-linewidth transition of <sup>88</sup>Sr<sup>+</sup> and showcase the operation of a Sr-ion clock with short-term instability averaging down as <span>\\(3.9\\times 1{0}^{-14}/\\sqrt{\\tau }\\)</span> (<i>τ</i>, averaging time). Our demonstration of a high-performance optical atomic clock interrogated by an integrated spiral cavity laser opens the door for future advanced clock systems to be entirely constructed using lightweight, portable and mass-manufacturable integrated optics and electronics.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"34 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01588-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical atomic clocks have demonstrated revolutionary advances in precision timekeeping, but their applicability to the real world is critically dependent on whether such clocks can operate outside the laboratory. Photonic integration offers one compelling solution to address the miniaturization and ruggedization needed to enable clock portability, but brings with it a new set of challenges in recreating the functionality of an optical clock using chip-scale building blocks. The clock laser used for atom interrogation is one particular point of uncertainty, as the performance of the meticulously engineered bulk-cavity-stabilized lasers would be exceptionally difficult to transfer to chip. Here we demonstrate that an integrated ultrahigh-quality-factor spiral cavity, when interfaced with a 1,348 nm seed laser, is able to reach a fractional frequency instability of 7.5 × 10−14 on chip. On frequency doubling the light to 674 nm, we use this laser to interrogate the narrow-linewidth transition of 88Sr+ and showcase the operation of a Sr-ion clock with short-term instability averaging down as \(3.9\times 1{0}^{-14}/\sqrt{\tau }\) (τ, averaging time). Our demonstration of a high-performance optical atomic clock interrogated by an integrated spiral cavity laser opens the door for future advanced clock systems to be entirely constructed using lightweight, portable and mass-manufacturable integrated optics and electronics.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.