{"title":"Superhydrophobic acid-resistant fluorinated Zif-8 prepared at normal temperature and pressure","authors":"Xinzhao Xia, Jiale Liu, Yixian Xiao, Yinuo Yu, Yunxiao Ren, Jiajun Chen, Wenting Xie, Bo Yang, Jianying Zhang, Zhou Yang, Wei Hu, Huai Yang","doi":"10.1016/j.cej.2025.159223","DOIUrl":null,"url":null,"abstract":"ZIF-8 has a wide range of potential applications, including gas adsorption and storage, molecular separation, chemical sensing, catalysis, and water purification, however, its low stability in acidic environments limits its practical application. Here, a fluorinated ZIF-8 at normal temperature and pressure was synthesized by using hybrid organic ligands, the obtained fluorinated ZIF-8 has high superhydrophobic and acid-resistant properties. A well-designed fluorinated ligand (FL) has trifluoromethyl, triazol and phenolic hydroxyl groups in the molecular structure, which are responsible for hydrophobic character, coordination site and further modifiable site, respectively. With increasing the hybrid ratio of FL, the water contact angle (WCA) of fluorinated ZIF-8 significantly increases. After further post-synthetic functionalization with heptafluorobutyric anhydride, the 20 mol% FL hybrid ZIF-8 (ZIF-8–20 %FL-7F) maintained its inherent high porosity and adsorption capacity, while exhibiting superhydrophobicity and acid resistance. It was loaded on a PP membrane to prepare a ZIF-8–20 %FL-7F@PP composite membrane, which can steadily achieve high-efficiency oil–water separation under acidic conditions with pH 2. This work demonstrates a universal and promising strategy to enhance the availability of the framework material in extreme environments.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"4 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.159223","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ZIF-8 has a wide range of potential applications, including gas adsorption and storage, molecular separation, chemical sensing, catalysis, and water purification, however, its low stability in acidic environments limits its practical application. Here, a fluorinated ZIF-8 at normal temperature and pressure was synthesized by using hybrid organic ligands, the obtained fluorinated ZIF-8 has high superhydrophobic and acid-resistant properties. A well-designed fluorinated ligand (FL) has trifluoromethyl, triazol and phenolic hydroxyl groups in the molecular structure, which are responsible for hydrophobic character, coordination site and further modifiable site, respectively. With increasing the hybrid ratio of FL, the water contact angle (WCA) of fluorinated ZIF-8 significantly increases. After further post-synthetic functionalization with heptafluorobutyric anhydride, the 20 mol% FL hybrid ZIF-8 (ZIF-8–20 %FL-7F) maintained its inherent high porosity and adsorption capacity, while exhibiting superhydrophobicity and acid resistance. It was loaded on a PP membrane to prepare a ZIF-8–20 %FL-7F@PP composite membrane, which can steadily achieve high-efficiency oil–water separation under acidic conditions with pH 2. This work demonstrates a universal and promising strategy to enhance the availability of the framework material in extreme environments.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.