Formation of mono- and dual-labelled antibody fragment conjugates via reversible site-selective disulfide modification and proximity induced lysine reactivity
Ioanna Thanasi, Nathalie Bouloc, Cliona McMahon, Ning Wang, Peter Szijj, Tobias Butcher, Lea Rochet, Elizabeth Love, Andy Merritt, James R. Baker, Vijay Chudasama
{"title":"Formation of mono- and dual-labelled antibody fragment conjugates via reversible site-selective disulfide modification and proximity induced lysine reactivity","authors":"Ioanna Thanasi, Nathalie Bouloc, Cliona McMahon, Ning Wang, Peter Szijj, Tobias Butcher, Lea Rochet, Elizabeth Love, Andy Merritt, James R. Baker, Vijay Chudasama","doi":"10.1039/d4sc06500j","DOIUrl":null,"url":null,"abstract":"Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein’s surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications. Thus, research in this area for the controlled loading of an entity via reaction with lysine residues is of high importance. In this article, we present an approach to achieve this by exploiting the quantitative and reversible site-selective modification of disulfides using pyridazinediones, which facilitates near-quantitative proximity-induced reactions with lysines to enable controlled loading of an entity. The strategy was appraised on several clinically relevant antibody fragments and enabled the formation of mono-labelled lysine-modified antibody fragment conjugates via the formation of stable amide bonds and the use of click chemistry for modular modification. Furthermore, through the use of multiple cycles of this novel strategy, an orthogonally bis-labelled lysine-modified antibody fragment conjugate was also furnished.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"15 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06500j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein’s surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications. Thus, research in this area for the controlled loading of an entity via reaction with lysine residues is of high importance. In this article, we present an approach to achieve this by exploiting the quantitative and reversible site-selective modification of disulfides using pyridazinediones, which facilitates near-quantitative proximity-induced reactions with lysines to enable controlled loading of an entity. The strategy was appraised on several clinically relevant antibody fragments and enabled the formation of mono-labelled lysine-modified antibody fragment conjugates via the formation of stable amide bonds and the use of click chemistry for modular modification. Furthermore, through the use of multiple cycles of this novel strategy, an orthogonally bis-labelled lysine-modified antibody fragment conjugate was also furnished.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.