Climate change drives reduced biocontrol of the invasive spongy moth

IF 27.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Nature Climate Change Pub Date : 2025-01-06 DOI:10.1038/s41558-024-02204-x
Jiawei Liu, Colin Kyle, Jiali Wang, Rao Kotamarthi, William Koval, Vanja Dukic, Greg Dwyer
{"title":"Climate change drives reduced biocontrol of the invasive spongy moth","authors":"Jiawei Liu, Colin Kyle, Jiali Wang, Rao Kotamarthi, William Koval, Vanja Dukic, Greg Dwyer","doi":"10.1038/s41558-024-02204-x","DOIUrl":null,"url":null,"abstract":"The effects of climate change on forest-defoliating insects are poorly understood, but could severely reduce forest productivity, biodiversity and timber production. For decades following its introduction in 1869, the spongy moth (Lymantria dispar) severely defoliated North American forests, but the introduction of the fungal pathogen Entomophaga maimaiga in 1989 suppressed spongy moth defoliation for 27 years. E. maimaiga, however, needs cool, moist conditions, whereas climate change is bringing hot, dry conditions to the range of the insect. Here we use an empirically verified eco-climate model to project that climate change will sharply reduce E. maimaiga infection rates, thereby increasing spongy moth defoliation. Recent rebounds in defoliation are consistent with our projections. Our work demonstrates that the effects of climate change on species interactions can have important consequences for natural ecosystems. The authors constructed an eco-climate model to project climate change impacts on populations of the spongy moth (Lymantria dispar) and its pathogen Entomophaga maimaiga. They show that climate change will sharply reduce E. maimaiga infection rates and subsequently increase spongy moth defoliation.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 2","pages":"210-217"},"PeriodicalIF":27.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02204-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of climate change on forest-defoliating insects are poorly understood, but could severely reduce forest productivity, biodiversity and timber production. For decades following its introduction in 1869, the spongy moth (Lymantria dispar) severely defoliated North American forests, but the introduction of the fungal pathogen Entomophaga maimaiga in 1989 suppressed spongy moth defoliation for 27 years. E. maimaiga, however, needs cool, moist conditions, whereas climate change is bringing hot, dry conditions to the range of the insect. Here we use an empirically verified eco-climate model to project that climate change will sharply reduce E. maimaiga infection rates, thereby increasing spongy moth defoliation. Recent rebounds in defoliation are consistent with our projections. Our work demonstrates that the effects of climate change on species interactions can have important consequences for natural ecosystems. The authors constructed an eco-climate model to project climate change impacts on populations of the spongy moth (Lymantria dispar) and its pathogen Entomophaga maimaiga. They show that climate change will sharply reduce E. maimaiga infection rates and subsequently increase spongy moth defoliation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化导致入侵海绵蛾的生物防治减少
气候变化对森林落叶昆虫的影响知之甚少,但可能严重降低森林生产力、生物多样性和木材产量。自1869年引入以来的几十年里,海绵蛾(Lymantria dispar)严重地破坏了北美森林的落叶,但1989年引入的真菌病原体Entomophaga maimaiga抑制了海绵蛾的落叶27年。然而,E. maimaiga需要凉爽、潮湿的环境,而气候变化正在给这种昆虫的生存范围带来炎热、干燥的环境。本文利用一个经实证验证的生态气候模型预测,气候变化将大幅降低麦穗棘球绦虫感染率,从而增加海绵蛾的落叶。最近落叶量的反弹与我们的预测一致。我们的工作表明,气候变化对物种相互作用的影响可能对自然生态系统产生重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
期刊最新文献
Temporary carbon dioxide removals to offset methane emissions Reducing the large short-lived impact of methane emissions with temporary carbon removals Structural lock-ins in tourism decarbonization and the alternative UNFCCC carbon trading could undermine global climate action Microclimates slow and alter the direction of climate velocities in tropical forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1