Jinmei Wang, Hao Hua, Jing Guo, Xu Huang, Xin Zhang, Yuchuan Yang, Danying Wang, Xiali Guo, Rui Zhang, Nicholas G. Smith, Sergio Rossi, Josep Peñuelas, Philippe Ciais, Chaoyang Wu, Lei Chen
{"title":"Late spring frost delays tree spring phenology by reducing photosynthetic productivity","authors":"Jinmei Wang, Hao Hua, Jing Guo, Xu Huang, Xin Zhang, Yuchuan Yang, Danying Wang, Xiali Guo, Rui Zhang, Nicholas G. Smith, Sergio Rossi, Josep Peñuelas, Philippe Ciais, Chaoyang Wu, Lei Chen","doi":"10.1038/s41558-024-02205-w","DOIUrl":null,"url":null,"abstract":"<p>Under climate warming, earlier spring phenology has heightened the risk of late spring frost (LSF) damage. However, the intricate interplay among LSF, spring phenology and photosynthetic carbon uptake remains poorly understood. Using 286,000 ground phenological records involving 870 tree species and remote-sensing data across the Northern Hemisphere, we show that LSF occurrence in a given year reduces photosynthetic productivity by 13.6%, resulting in a delay in spring phenology by ~7.0 days in the subsequent year. Our experimental evidence, along with simulations using modified process-based phenology models, further supports this finding. This frost-induced delay in spring phenology subsequently leads to a decrease in photosynthetic productivity during the next year following an LSF event. Therefore, it is essential to integrate this frost-induced delay in spring phenology into current Earth system models to ensure accurate predictions of the impacts of climate extremes on terrestrial carbon cycling under future climate change.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"27 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-024-02205-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Under climate warming, earlier spring phenology has heightened the risk of late spring frost (LSF) damage. However, the intricate interplay among LSF, spring phenology and photosynthetic carbon uptake remains poorly understood. Using 286,000 ground phenological records involving 870 tree species and remote-sensing data across the Northern Hemisphere, we show that LSF occurrence in a given year reduces photosynthetic productivity by 13.6%, resulting in a delay in spring phenology by ~7.0 days in the subsequent year. Our experimental evidence, along with simulations using modified process-based phenology models, further supports this finding. This frost-induced delay in spring phenology subsequently leads to a decrease in photosynthetic productivity during the next year following an LSF event. Therefore, it is essential to integrate this frost-induced delay in spring phenology into current Earth system models to ensure accurate predictions of the impacts of climate extremes on terrestrial carbon cycling under future climate change.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.