{"title":"The mechanical state of pre-tumoral epithelia controls subsequent Drosophila tumor aggressiveness","authors":"Marianne Montemurro, Bruno Monier, Magali Suzanne","doi":"10.1016/j.devcel.2024.12.006","DOIUrl":null,"url":null,"abstract":"Tumors evolve through the acquisition of increasingly aggressive traits associated with dysplasia. This progression is accompanied by alterations in tumor mechanical properties, especially through extracellular matrix remodeling. However, the contribution of pre-tumoral tissue mechanics to tumor aggressiveness remains poorly known <em>in vivo</em>. Here, we show that adherens junction tension in pre-tumoral tissues dictates subsequent tumor evolution in <em>Drosophila</em>. Increased cell contractility, observed in aggressive tumors before any sign of tissue overgrowth, proved sufficient to trigger dysplasia in normally hyperplastic tumors. In addition, high contractility precedes any changes in cell polarity and contributes to tumor evolution through cell death induction, which favors cell-cell junction weakening. Overall, our results highlight the need to re-evaluate the roles of tumoral cell death and identify pre-tumoral cell mechanics as an unsuspected early marker and key trigger of tumor aggressiveness.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"21 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumors evolve through the acquisition of increasingly aggressive traits associated with dysplasia. This progression is accompanied by alterations in tumor mechanical properties, especially through extracellular matrix remodeling. However, the contribution of pre-tumoral tissue mechanics to tumor aggressiveness remains poorly known in vivo. Here, we show that adherens junction tension in pre-tumoral tissues dictates subsequent tumor evolution in Drosophila. Increased cell contractility, observed in aggressive tumors before any sign of tissue overgrowth, proved sufficient to trigger dysplasia in normally hyperplastic tumors. In addition, high contractility precedes any changes in cell polarity and contributes to tumor evolution through cell death induction, which favors cell-cell junction weakening. Overall, our results highlight the need to re-evaluate the roles of tumoral cell death and identify pre-tumoral cell mechanics as an unsuspected early marker and key trigger of tumor aggressiveness.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.