Mary O’Keeffe, Sam A. Booker, Darren Walsh, Mosi Li, Chloe Henley, Laura Simões de Oliveira, Mingshan Liu, Xingran Wang, Maria Banqueri, Katherine Ridley, Kosala N. Dissanayake, Cristina Martinez-Gonzalez, Kirsty J. Craigie, Deepali Vasoya, Tom Leah, Xin He, David A. Hume, Ian Duguid, Matthew F. Nolan, Jing Qiu, David J. A. Wyllie, Owen R. Dando, Alfredo Gonzalez-Sulser, Jian Gan, Clare Pridans, Peter C. Kind, Giles E. Hardingham
{"title":"Typical development of synaptic and neuronal properties can proceed without microglia in the cortex and thalamus","authors":"Mary O’Keeffe, Sam A. Booker, Darren Walsh, Mosi Li, Chloe Henley, Laura Simões de Oliveira, Mingshan Liu, Xingran Wang, Maria Banqueri, Katherine Ridley, Kosala N. Dissanayake, Cristina Martinez-Gonzalez, Kirsty J. Craigie, Deepali Vasoya, Tom Leah, Xin He, David A. Hume, Ian Duguid, Matthew F. Nolan, Jing Qiu, David J. A. Wyllie, Owen R. Dando, Alfredo Gonzalez-Sulser, Jian Gan, Clare Pridans, Peter C. Kind, Giles E. Hardingham","doi":"10.1038/s41593-024-01833-x","DOIUrl":null,"url":null,"abstract":"<p>Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (<i>Csf1r</i><sup>∆FIRE/∆FIRE</sup>), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated. Seizure susceptibility and hippocampal-prefrontal cortex coherence in awake behaving animals, processes that are disrupted in mice deficient in microglia-enriched genes, are also normal. Similarly, eye-specific segregation of inputs into the lateral geniculate nucleus proceeds normally in the absence of microglia. Single-cell and single-nucleus transcriptomic analyses of neurons and astrocytes did not uncover any substantial perturbation caused by microglial absence. Thus, the brain possesses remarkable adaptability to execute developmental synaptic refinement, maturation and connectivity in the absence of microglia.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"27 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01833-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r∆FIRE/∆FIRE), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated. Seizure susceptibility and hippocampal-prefrontal cortex coherence in awake behaving animals, processes that are disrupted in mice deficient in microglia-enriched genes, are also normal. Similarly, eye-specific segregation of inputs into the lateral geniculate nucleus proceeds normally in the absence of microglia. Single-cell and single-nucleus transcriptomic analyses of neurons and astrocytes did not uncover any substantial perturbation caused by microglial absence. Thus, the brain possesses remarkable adaptability to execute developmental synaptic refinement, maturation and connectivity in the absence of microglia.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.