Engineering covalent small molecule–RNA complexes in living cells

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2025-01-06 DOI:10.1038/s41589-024-01801-3
Raphael Bereiter, Laurin Flemmich, Kamila Nykiel, Sarah Heel, Stephan Geley, Malou Hanisch, Clemens Eichler, Kathrin Breuker, Alexandra Lusser, Ronald Micura
{"title":"Engineering covalent small molecule–RNA complexes in living cells","authors":"Raphael Bereiter, Laurin Flemmich, Kamila Nykiel, Sarah Heel, Stephan Geley, Malou Hanisch, Clemens Eichler, Kathrin Breuker, Alexandra Lusser, Ronald Micura","doi":"10.1038/s41589-024-01801-3","DOIUrl":null,"url":null,"abstract":"<p>Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer–ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site. We illustrate this for the preQ<sub>1</sub>-I riboswitch, in vitro and in vivo. Further, we demonstrate the versatility of the approach with a covalent fluorescent light-up aptamer. The coPepper system maintains strong fluorescence in live-cell imaging even after washing, can be used for super-resolution microscopy and, most notably, is uniquely suited for fluorescence recovery after photobleaching to monitor intracellular RNA dynamics. In addition, we have generated a Pepper ligand with a second handle for bioorthogonal chemistry to allow easily traceable pull-down of the covalently linked target RNA. Finally, we provide evidence for the suitability of this tethering strategy for drug targeting.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"21 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01801-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer–ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site. We illustrate this for the preQ1-I riboswitch, in vitro and in vivo. Further, we demonstrate the versatility of the approach with a covalent fluorescent light-up aptamer. The coPepper system maintains strong fluorescence in live-cell imaging even after washing, can be used for super-resolution microscopy and, most notably, is uniquely suited for fluorescence recovery after photobleaching to monitor intracellular RNA dynamics. In addition, we have generated a Pepper ligand with a second handle for bioorthogonal chemistry to allow easily traceable pull-down of the covalently linked target RNA. Finally, we provide evidence for the suitability of this tethering strategy for drug targeting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在活细胞中对 RNA 进行共价标记面临许多挑战。在这里,我们描述了一种以结构为导向的方法来设计 RNA 合体-配体共价复合物。关键在于用亲电柄修饰同源配体,使其能与 RNA 结合位点上的鸟嘌呤发生反应。我们在体外和体内对预 Q1-I 核糖开关进行了说明。此外,我们还用共价荧光发光适配体证明了这种方法的多功能性。coPepper 系统在活细胞成像中即使在洗涤后也能保持较强的荧光,可用于超分辨率显微镜,最值得注意的是,它非常适合在光漂白后恢复荧光,以监测细胞内 RNA 的动态变化。此外,我们还生成了一种 Pepper 配体,该配体带有第二个手柄,可用于生物正交化学反应,从而可轻松溯源共价连接的目标 RNA。最后,我们提供了这种系链策略适用于药物靶向的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery Small molecule inhibits KCNQ channels with a non-blocking mechanism PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins Orthogonalized human protease control of secreted signals Aromatic side-chain crosslinking in RiPP biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1