Tianchen An, Qian Tan, Lixu Jiang, Li Liu, Xing Jiang, Liying Liu, Xiaofei Chang, Xihao Tian, Zixin Deng, Shuai Gao, Lianrong Wang, Shi Chen
{"title":"A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery","authors":"Tianchen An, Qian Tan, Lixu Jiang, Li Liu, Xing Jiang, Liying Liu, Xiaofei Chang, Xihao Tian, Zixin Deng, Shuai Gao, Lianrong Wang, Shi Chen","doi":"10.1038/s41589-024-01832-w","DOIUrl":null,"url":null,"abstract":"<p>In prokaryotes, the non-bridging oxygen in the DNA sugar-phosphate backbone can be enzymatically replaced by a sulfur atom, resulting in phosphorothioate (PT) modification. However, the mechanism underlying the oxygen-to-sulfur substitution remains enigmatic. In this study, we discovered a hypercompact DNA phosphorothioation system, TdpABC, in extreme thermophiles. This DNA sulfuration process occurs through two sequential steps: an initial activation step by ATP to form an adenylated intermediate, followed by a substitution step where the adenyl group is replaced with a sulfur atom. Together with the TdpA–TdpB, the TdpABC system provides anti-phage defense by degrading PT-free phage DNA. Cryogenic electron microscopy structural analysis revealed that the TdpA hexamer binds one strand of encircled duplex DNA via hydrogen bonds arranged in a spiral staircase conformation. Nevertheless, the TdpAB–DNA interaction was sensitive to the hydrophobicity of the PT sulfur. PTs inhibit ATP-driven translocation and nuclease activity of TdpAB on self-DNA, thereby preventing autoimmunity.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"15 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01832-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In prokaryotes, the non-bridging oxygen in the DNA sugar-phosphate backbone can be enzymatically replaced by a sulfur atom, resulting in phosphorothioate (PT) modification. However, the mechanism underlying the oxygen-to-sulfur substitution remains enigmatic. In this study, we discovered a hypercompact DNA phosphorothioation system, TdpABC, in extreme thermophiles. This DNA sulfuration process occurs through two sequential steps: an initial activation step by ATP to form an adenylated intermediate, followed by a substitution step where the adenyl group is replaced with a sulfur atom. Together with the TdpA–TdpB, the TdpABC system provides anti-phage defense by degrading PT-free phage DNA. Cryogenic electron microscopy structural analysis revealed that the TdpA hexamer binds one strand of encircled duplex DNA via hydrogen bonds arranged in a spiral staircase conformation. Nevertheless, the TdpAB–DNA interaction was sensitive to the hydrophobicity of the PT sulfur. PTs inhibit ATP-driven translocation and nuclease activity of TdpAB on self-DNA, thereby preventing autoimmunity.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.