Visible-Light-Fueled Polymerizations for 3D Printing.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2025-01-06 DOI:10.1021/acs.accounts.4c00680
Lynn M Stevens, Nirvana T Almada, Hyeong Seok Kim, Zachariah A Page
{"title":"Visible-Light-Fueled Polymerizations for 3D Printing.","authors":"Lynn M Stevens, Nirvana T Almada, Hyeong Seok Kim, Zachariah A Page","doi":"10.1021/acs.accounts.4c00680","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing \"imagination is the only limit\", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the <i>ZAP</i> group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics. Our research addresses key limitations in current photopolymerization methods, such as the reliance on high-energy UV light, oxygen sensitivity, and narrow materials scope. We present a comprehensive overview of our advancements in both light-fueled radical and nonradical chemistry and its implementation in vat photopolymerization 3D printing using panchromatic resins. In radical chemistry, we have developed a class of boron dipyrromethene (BODIPY) dye molecules that act as photoradical generators (PRGs). Upon exposure to visible or near-infrared (NIR) light, these molecules induced efficient polymerization of acrylics. Structural modifications, including the installment of halogens, twisted aromatic groups, nitrogen bridgeheads, and thiophenes, have imbued activity across this wide spectral range. Systematic photophysical characterization of these dyes revealed the presence of long-lived excited (high in energy) states, from which we accredited the enhancements in polymerization efficiency. In turn, curing (converting a liquid to solid) with low intensity visible-to-NIR light was possible in mere seconds; a requirement for many light-based 3D printing technologies. Our efforts in nonradical chemistry have been motivated by the need for new materials with properties and functionality currently inaccessible using radical-based 3D printing approaches (e.g., tough and recyclable), while also providing an avenue toward multimaterial fabrication. We have developed photobase generators (PBGs) - dyes that release basic cargo upon light exposure-to catalyze polymerizations beyond acrylic-only resins. These include coumarinylmethyl- and BODIPY-tetramethylguanidine (TMG) derivatives, as well as onium photocages, which enabled photocuring of thiol-ene and thiol-isocyanate resins. Lastly, we have pioneered rapid, high-resolution visible-to-NIR light-based 3D printing. Our work includes the development of reactive photoredox catalyst systems for speed, additives for oxygen-tolerance, NIR-light reactivity for nanoparticle composites, models for streamlined optimization, and triplet fusion for high resolution. These advancements led to build speeds up to 45 mm/h with features <100 μm, rivaling contemporary UV-based technologies. The impact of our research extends beyond academic interest, offering practical solutions for additive manufacturing of (multi)functional materials. By enabling the use of lower-energy light sources, our work paves the way for environmentally friendly, cost-effective, and versatile 3D printing. It opens new possibilities for printing with previously incompatible materials, including UV-sensitive compounds and high-refractive-index nanocomposites. Nascent developments in multimaterial 3D printing via color- and dose-controlled light exposure are enabling the production of objects with precise placement of materials having disparate composition and properties. As we continue to develop photopolymerizations and light-based 3D printing, we anticipate transformative applications in fields ranging from tissue engineering to advanced electronics manufacturing. This will bring the community one step closer to fulfill the dream of creators only being \"limited by imagination\".</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the ZAP group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics. Our research addresses key limitations in current photopolymerization methods, such as the reliance on high-energy UV light, oxygen sensitivity, and narrow materials scope. We present a comprehensive overview of our advancements in both light-fueled radical and nonradical chemistry and its implementation in vat photopolymerization 3D printing using panchromatic resins. In radical chemistry, we have developed a class of boron dipyrromethene (BODIPY) dye molecules that act as photoradical generators (PRGs). Upon exposure to visible or near-infrared (NIR) light, these molecules induced efficient polymerization of acrylics. Structural modifications, including the installment of halogens, twisted aromatic groups, nitrogen bridgeheads, and thiophenes, have imbued activity across this wide spectral range. Systematic photophysical characterization of these dyes revealed the presence of long-lived excited (high in energy) states, from which we accredited the enhancements in polymerization efficiency. In turn, curing (converting a liquid to solid) with low intensity visible-to-NIR light was possible in mere seconds; a requirement for many light-based 3D printing technologies. Our efforts in nonradical chemistry have been motivated by the need for new materials with properties and functionality currently inaccessible using radical-based 3D printing approaches (e.g., tough and recyclable), while also providing an avenue toward multimaterial fabrication. We have developed photobase generators (PBGs) - dyes that release basic cargo upon light exposure-to catalyze polymerizations beyond acrylic-only resins. These include coumarinylmethyl- and BODIPY-tetramethylguanidine (TMG) derivatives, as well as onium photocages, which enabled photocuring of thiol-ene and thiol-isocyanate resins. Lastly, we have pioneered rapid, high-resolution visible-to-NIR light-based 3D printing. Our work includes the development of reactive photoredox catalyst systems for speed, additives for oxygen-tolerance, NIR-light reactivity for nanoparticle composites, models for streamlined optimization, and triplet fusion for high resolution. These advancements led to build speeds up to 45 mm/h with features <100 μm, rivaling contemporary UV-based technologies. The impact of our research extends beyond academic interest, offering practical solutions for additive manufacturing of (multi)functional materials. By enabling the use of lower-energy light sources, our work paves the way for environmentally friendly, cost-effective, and versatile 3D printing. It opens new possibilities for printing with previously incompatible materials, including UV-sensitive compounds and high-refractive-index nanocomposites. Nascent developments in multimaterial 3D printing via color- and dose-controlled light exposure are enabling the production of objects with precise placement of materials having disparate composition and properties. As we continue to develop photopolymerizations and light-based 3D printing, we anticipate transformative applications in fields ranging from tissue engineering to advanced electronics manufacturing. This will bring the community one step closer to fulfill the dream of creators only being "limited by imagination".

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Visible-Light-Fueled Polymerizations for 3D Printing. Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization. Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes Rare Earth Complex-Based Functional Materials: From Molecular Design and Performance Regulation to Unique Applications. Saving patient x: A quasi-experimental study of teamwork and performance in simulation following an interprofessional escape room.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1