David Sunghwan Lee, Hyong Joon Lee, Yunmi Song, Jin Kyoung Park, Jin Hyuck Heo, Sang Hyuk Im
{"title":"Green solvent strategies for the sustainable development of perovskite solar cells.","authors":"David Sunghwan Lee, Hyong Joon Lee, Yunmi Song, Jin Kyoung Park, Jin Hyuck Heo, Sang Hyuk Im","doi":"10.1039/d4cc05454g","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite solar cells have been of great interest over the past decade, reaching a remarkable power conversion efficiency of 26.7%, which is comparable to best performing silicon devices. Moreover, the capability of perovskite solar cells to be solution-processed at low cost makes them an ideal candidate for future photovoltaic systems that could replace expensive silicon and III-V systems. However, the current state of solution-processing of perovskite solar cells is heavily dependent on toxic solvents such as DMF, chlorobenzene, diethyl ether and so on. As perovskite devices approach commercialization and large-scale fabrication, a solution must first be found to reduce the toxic risks associated with the processes. This review article presents a summary of general attempts at achieving fully green-processed perovskite solar cell fabrication. A thorough examination of popular solvents and possible alternatives is first performed, followed by their applications in perovskite layer fabrication (including solvents and anti-solvents) and charge transport layer fabrication processes.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":"2011-2025"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cc05454g","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells have been of great interest over the past decade, reaching a remarkable power conversion efficiency of 26.7%, which is comparable to best performing silicon devices. Moreover, the capability of perovskite solar cells to be solution-processed at low cost makes them an ideal candidate for future photovoltaic systems that could replace expensive silicon and III-V systems. However, the current state of solution-processing of perovskite solar cells is heavily dependent on toxic solvents such as DMF, chlorobenzene, diethyl ether and so on. As perovskite devices approach commercialization and large-scale fabrication, a solution must first be found to reduce the toxic risks associated with the processes. This review article presents a summary of general attempts at achieving fully green-processed perovskite solar cell fabrication. A thorough examination of popular solvents and possible alternatives is first performed, followed by their applications in perovskite layer fabrication (including solvents and anti-solvents) and charge transport layer fabrication processes.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.