{"title":"Responsive Degradable Bottlebrush Polymers Enable Drugs With Superior Efficacy and Minimal Systemic Toxicity.","authors":"Liming Shao, Hongrui Zhang, Lei Sun, Lubin Ning, Xiuying Sun, Chaoke Qin, Wenhua Xu, Rui Xu, Fei Jia","doi":"10.1002/adhm.202405202","DOIUrl":null,"url":null,"abstract":"<p><p>Bottlebrush polymers (BBPs) have garnered significant attention as advanced drug delivery systems, capable of transporting a diverse range of therapeutic agents, including both chemical drugs and biologics. Despite their effectiveness, the empty BBP vectors post-drug release may pose long-term safety risks due to their difficult systemic clearance. Here, a responsive degradable BBP platform for cancer therapy is developed, featuring a poly(disulfide) backbone grafted with fluorine-terminated zwitterionic side chains. Anti-cancer drugs are tethered to the backbone via a clinically approved valine-citrulline (VC) linker. This design leverages the tumor's reductive environment and Cathepsin B overexpression for BBP rapid degradation and precise drug release restricted within tumor cells, thereby addressing systemic safety concerns over synthetic BBP and expanding the therapeutic window of anti-cancer drugs simultaneously. Surface fluorination of BBP further enhances tumor accumulation and deep penetration. In vivo studies with monomethyl auristatin E (MMAE)-loaded BBP in tumor-bearing mice demonstrate substantial tumor suppression with minimal side effects. Together, these findings highlight the potential of responsive degradable BBP as a versatile unimolecular platform for cancer drug delivery, addressing existing challenges associated with synthetic BBP nanomedicines.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2405202"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202405202","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bottlebrush polymers (BBPs) have garnered significant attention as advanced drug delivery systems, capable of transporting a diverse range of therapeutic agents, including both chemical drugs and biologics. Despite their effectiveness, the empty BBP vectors post-drug release may pose long-term safety risks due to their difficult systemic clearance. Here, a responsive degradable BBP platform for cancer therapy is developed, featuring a poly(disulfide) backbone grafted with fluorine-terminated zwitterionic side chains. Anti-cancer drugs are tethered to the backbone via a clinically approved valine-citrulline (VC) linker. This design leverages the tumor's reductive environment and Cathepsin B overexpression for BBP rapid degradation and precise drug release restricted within tumor cells, thereby addressing systemic safety concerns over synthetic BBP and expanding the therapeutic window of anti-cancer drugs simultaneously. Surface fluorination of BBP further enhances tumor accumulation and deep penetration. In vivo studies with monomethyl auristatin E (MMAE)-loaded BBP in tumor-bearing mice demonstrate substantial tumor suppression with minimal side effects. Together, these findings highlight the potential of responsive degradable BBP as a versatile unimolecular platform for cancer drug delivery, addressing existing challenges associated with synthetic BBP nanomedicines.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.