Huifang Wei, Dengyun Zhao, Yafei Zhi, Qiong Wu, Jing Ma, Jialuo Xu, Tingting Liu, Jing Zhang, Penglei Wang, Yamei Hu, Xinyu He, Fangqin Guo, Ming Jiang, Dandan Zhang, Wenna Nie, Ran Yang, Tongjin Zhao, Zigang Dong, Kangdong Liu
{"title":"RTN4IP1 Contributes to ESCC via Regulation of Amino Acid Transporters.","authors":"Huifang Wei, Dengyun Zhao, Yafei Zhi, Qiong Wu, Jing Ma, Jialuo Xu, Tingting Liu, Jing Zhang, Penglei Wang, Yamei Hu, Xinyu He, Fangqin Guo, Ming Jiang, Dandan Zhang, Wenna Nie, Ran Yang, Tongjin Zhao, Zigang Dong, Kangdong Liu","doi":"10.1002/advs.202406220","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase. Here, a notable upregulation of RTN4IP1 is demonstrated, which is associated with poor survival in patients with ESCC. RTN4IP1 depletion impairs cell proliferation and induces apoptosis of ESCC cells. Furthermore, c-Myc regulates RTN4IP1 expression via iron regulatory protein 2 (IRP2) at the post-transcriptional level. Mechanistically, RTN4IP1 mRNA harbors functional iron-responsive elements (IREs) in the 3' UTR, which can be targeted by IRP2, resulting in increased mRNA stability. Finally, RTN4IP1 depletion abrogates amino acid uptake and induces amino acid starvation via downregulation of the amino acid transporters SLC1A5, SLC3A2, and SLC7A5, indicating a possible pathway through which RTN4IP1 contributes to ESCC carcinogenesis and progression. In vivo studies using cell-derived xenograft and patient-derived xenograft mouse models as well as a 4-nitroquinoline 1-oxide-induced ESCC model in esophageal-specific Rtn4ip1 knockout mice demonstrate the essential role of RTN4IP1 in ESCC development. Thus, RTN4IP1 emerges as a key cancer-promoting protein in ESCC, suggesting therapeutic RTN4IP1 suppression as a promising strategy for ESCC treatment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2406220"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406220","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase. Here, a notable upregulation of RTN4IP1 is demonstrated, which is associated with poor survival in patients with ESCC. RTN4IP1 depletion impairs cell proliferation and induces apoptosis of ESCC cells. Furthermore, c-Myc regulates RTN4IP1 expression via iron regulatory protein 2 (IRP2) at the post-transcriptional level. Mechanistically, RTN4IP1 mRNA harbors functional iron-responsive elements (IREs) in the 3' UTR, which can be targeted by IRP2, resulting in increased mRNA stability. Finally, RTN4IP1 depletion abrogates amino acid uptake and induces amino acid starvation via downregulation of the amino acid transporters SLC1A5, SLC3A2, and SLC7A5, indicating a possible pathway through which RTN4IP1 contributes to ESCC carcinogenesis and progression. In vivo studies using cell-derived xenograft and patient-derived xenograft mouse models as well as a 4-nitroquinoline 1-oxide-induced ESCC model in esophageal-specific Rtn4ip1 knockout mice demonstrate the essential role of RTN4IP1 in ESCC development. Thus, RTN4IP1 emerges as a key cancer-promoting protein in ESCC, suggesting therapeutic RTN4IP1 suppression as a promising strategy for ESCC treatment.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.