Solvent Engineering-Enabled Surface Defect Passivation in Cu2ZnSn(S,Se)4 Solar Cells with Low Open-Circuit Voltage Losses and Improved Carrier Lifetime.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-01-06 DOI:10.1002/cssc.202402391
Umar Farooq, Boyang Han, Usman Ali Shah, Fa Yang, Sheng Li, Yanping Song, Ali Hassan, Zhengquan Li, Jin Wang
{"title":"Solvent Engineering-Enabled Surface Defect Passivation in Cu2ZnSn(S,Se)4 Solar Cells with Low Open-Circuit Voltage Losses and Improved Carrier Lifetime.","authors":"Umar Farooq, Boyang Han, Usman Ali Shah, Fa Yang, Sheng Li, Yanping Song, Ali Hassan, Zhengquan Li, Jin Wang","doi":"10.1002/cssc.202402391","DOIUrl":null,"url":null,"abstract":"<p><p>The efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been lagging behind the Shockley-Queisser limit primarily due to the presence of deep-level defects. These deep-level defects cause critical issues such as short carrier diffusion length, significant band tailing, and a large open-circuit voltage (VOC) deficit, ultimately leading to low device efficiency. To address these issues, we propose a post-fabrication defect healing strategy by dip-coating the CZTSSe film in dimethylformamide (DMF) solvent. Immersing the absorber layer in DMF (a polar solvent), neutralizes CuSn antisite defects through chemical bonding and facilitates the formation of a dense, smooth CZTSSe film with larger grain size. Deep-level transient spectroscopy revealed a remarkable increase in carrier diffusion length from 93 nm (control device) to 142 nm (champion device), confirming the beneficial effect of solvent-assisted post-treatment on mitigating CuSn antisite defects. The reduction in defect densities led to a decrease in VOC deficit by up to 289 mV, accompanied by an increased champion device efficiency of 11.4%. This work highlights the huge potential of the DMF post-treatment strategy for defect healing in CZTSSe solar cells.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402391"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402391","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been lagging behind the Shockley-Queisser limit primarily due to the presence of deep-level defects. These deep-level defects cause critical issues such as short carrier diffusion length, significant band tailing, and a large open-circuit voltage (VOC) deficit, ultimately leading to low device efficiency. To address these issues, we propose a post-fabrication defect healing strategy by dip-coating the CZTSSe film in dimethylformamide (DMF) solvent. Immersing the absorber layer in DMF (a polar solvent), neutralizes CuSn antisite defects through chemical bonding and facilitates the formation of a dense, smooth CZTSSe film with larger grain size. Deep-level transient spectroscopy revealed a remarkable increase in carrier diffusion length from 93 nm (control device) to 142 nm (champion device), confirming the beneficial effect of solvent-assisted post-treatment on mitigating CuSn antisite defects. The reduction in defect densities led to a decrease in VOC deficit by up to 289 mV, accompanied by an increased champion device efficiency of 11.4%. This work highlights the huge potential of the DMF post-treatment strategy for defect healing in CZTSSe solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Solvent Engineering-Enabled Surface Defect Passivation in Cu2ZnSn(S,Se)4 Solar Cells with Low Open-Circuit Voltage Losses and Improved Carrier Lifetime. Enhancing Stability and Activity of Fe-based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites. Two-Dimensional BiOCl Nanosheet-Encapsulated Cu2O Octahedra: p-n Junction Photocatalysts for Efficient Visible Light Driven CO2-to-CH4 Conversion. Arginine as a multifunctional additive for high performance S-cathode. Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1