Engineering an Mn(II)-oxidizing Pseudomonas whole-cell catalyst chassis to efficiently biosynthesize 2,5-furandicarboxylic acid from hydroxymethylfurfural.
Yongxuan Liu, Zhicheng Zhou, Jingjing Xu, Shiwei Li, Yu Xiao, Xun Yu, Tan Wang, Jie Zeng, Lin Li
{"title":"Engineering an Mn(II)-oxidizing Pseudomonas whole-cell catalyst chassis to efficiently biosynthesize 2,5-furandicarboxylic acid from hydroxymethylfurfural.","authors":"Yongxuan Liu, Zhicheng Zhou, Jingjing Xu, Shiwei Li, Yu Xiao, Xun Yu, Tan Wang, Jie Zeng, Lin Li","doi":"10.1016/j.biortech.2025.132036","DOIUrl":null,"url":null,"abstract":"<p><p>2,5-Furandicarboxylic acid (FDCA) is a high-value chemical extensively used in the production of bio-based polymers, but bioconversion of furan derivatives like 5-hydroxymethylfurfural (HMF) into FDCA remains challenging owing to substrate cytotoxicity. Here, we engineered an Mn(II)-oxidizing Pseudomonas sp. MB04B for efficient FDCA biosynthesis from HMF. We deleted 4.6 % of the MB04B genome to generate the engineered MB04C-6 chassis, then introduced two exogenous gene cassettes, P<sub>MP00</sub>-hmfH and P<sub>J23119</sub>-hmfH'. Using the resulting MB04C-6/pHMF as a whole-cell catalyst, optimizing the reaction system, and incorporating CaCO<sub>3</sub> increased the FDCA yield by approximately 63.4-fold compared to MB04C-6. We also enhanced the CRISPR-associated transposases system for single-step chromosomal integration of exogenous genes. The optimal chassis strain MB04S-HMF8, rapidly produced 97 mmol/L FDCA from 100 mmol/L HMF in 12 h, with an FDCA production rate of 1.26 g L<sup>-1</sup>h<sup>-1</sup>, showcasing its potential as a robust, cost-effective, and environmentally sustainable whole-cell biocatalyst for industrial-scale FDCA production.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132036"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132036","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
2,5-Furandicarboxylic acid (FDCA) is a high-value chemical extensively used in the production of bio-based polymers, but bioconversion of furan derivatives like 5-hydroxymethylfurfural (HMF) into FDCA remains challenging owing to substrate cytotoxicity. Here, we engineered an Mn(II)-oxidizing Pseudomonas sp. MB04B for efficient FDCA biosynthesis from HMF. We deleted 4.6 % of the MB04B genome to generate the engineered MB04C-6 chassis, then introduced two exogenous gene cassettes, PMP00-hmfH and PJ23119-hmfH'. Using the resulting MB04C-6/pHMF as a whole-cell catalyst, optimizing the reaction system, and incorporating CaCO3 increased the FDCA yield by approximately 63.4-fold compared to MB04C-6. We also enhanced the CRISPR-associated transposases system for single-step chromosomal integration of exogenous genes. The optimal chassis strain MB04S-HMF8, rapidly produced 97 mmol/L FDCA from 100 mmol/L HMF in 12 h, with an FDCA production rate of 1.26 g L-1h-1, showcasing its potential as a robust, cost-effective, and environmentally sustainable whole-cell biocatalyst for industrial-scale FDCA production.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.