Dual-frequency ultrasonic oxidation of cyanobacterial toxins (MC-LR and MC-RR) at drinking water resources: Assessment of analytical methods and ultrasonic reactor configuration

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2025-02-01 DOI:10.1016/j.ultsonch.2024.107203
Zeynep Eren
{"title":"Dual-frequency ultrasonic oxidation of cyanobacterial toxins (MC-LR and MC-RR) at drinking water resources: Assessment of analytical methods and ultrasonic reactor configuration","authors":"Zeynep Eren","doi":"10.1016/j.ultsonch.2024.107203","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasonic oxidation provides the degradation of a wide range of water pollutants to the final products defined as carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. In this study, it was investigated the application of novel ultrasonic reactor that allows the several combinations of low (20 kHz and 40 kHz) and high frequency ultrasonic piezoceramic transducer (578 kHz, 862 kHz and 1142 kHz) to degrade two main cyanobacterial toxins, Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR). A plate transducer operating at different frequencies (40 kHz or 578 kHz/862 kHz/1142 kHz) was combined with a probe (20 kHz) as well as two plate transducers 40 kHz and 578 kHz/862 kHz/1142 kHz were combined to provide dual frequency ultrasonic reactor (DFUR). In order to carry out the study successfully, it is necessary to detect and monitor microcystins (MCs) using sensitive, robust, selective and reliable analytical methods. In this work, it was simultaneously identified and quantified with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) without any phase extraction for sample preparation. Ultrasonic oxidation of MC-RR and MC-LR by DFUR exhibited more suitable degradation rate with second order than a very small difference from first-order reaction. A comprehensive standardization method for ultrasonic sources were considered based on calorimetry, chemical dosimetry, cavitational yield, energy efficiency as well.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"113 ","pages":"Article 107203"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724004528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic oxidation provides the degradation of a wide range of water pollutants to the final products defined as carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. In this study, it was investigated the application of novel ultrasonic reactor that allows the several combinations of low (20 kHz and 40 kHz) and high frequency ultrasonic piezoceramic transducer (578 kHz, 862 kHz and 1142 kHz) to degrade two main cyanobacterial toxins, Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR). A plate transducer operating at different frequencies (40 kHz or 578 kHz/862 kHz/1142 kHz) was combined with a probe (20 kHz) as well as two plate transducers 40 kHz and 578 kHz/862 kHz/1142 kHz were combined to provide dual frequency ultrasonic reactor (DFUR). In order to carry out the study successfully, it is necessary to detect and monitor microcystins (MCs) using sensitive, robust, selective and reliable analytical methods. In this work, it was simultaneously identified and quantified with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) without any phase extraction for sample preparation. Ultrasonic oxidation of MC-RR and MC-LR by DFUR exhibited more suitable degradation rate with second order than a very small difference from first-order reaction. A comprehensive standardization method for ultrasonic sources were considered based on calorimetry, chemical dosimetry, cavitational yield, energy efficiency as well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
饮用水资源中蓝藻毒素(MC-LR和MC-RR)的双频超声氧化:分析方法和超声反应器配置的评估。
超声波氧化提供了广泛的水污染物的降解,最终产品定义为二氧化碳,短链有机酸和无机离子,通常毒性较小,有利于生物降解。本研究研究了新型超声反应器的应用,该反应器允许低(20 kHz和40 kHz)和高频超声压电换能器(578 kHz, 862 kHz和1142 kHz)的几种组合来降解两种主要的蓝藻毒素,微囊藻毒素- rr (MC-RR)和微囊藻毒素- lr (MC-LR)。采用不同频率(40 kHz、578 kHz/862 kHz/1142 kHz)的板式换能器与20 kHz的探头组合,以及40 kHz、578 kHz/862 kHz/1142 kHz两个板式换能器组合,构成双频超声反应器。为了成功开展研究,有必要采用灵敏、稳健、选择性和可靠的分析方法检测和监测微囊藻毒素(MCs)。本研究采用液相色谱-串联质谱法(LC-MS/MS)同时进行鉴定和定量,无需进行样品提取。DFUR对MC-RR和MC-LR的超声氧化反应表现出更合适的二级降解速率,而与一级反应相差很小。从量热法、化学剂量法、空化产率、能量效率等方面考虑了超声源的综合标准化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Ultrasonication-assisted lipase-catalyzed esterification of chlorogenic acid: A comparative study using fatty alcohol and acids in solvent and solvent-free conditions Impact of power ultrasound on the quality of leafy green produce through a multifrequency, multimode, modulated system Effects of ultrasound-assisted low-salt curing on water retention, tenderness and in vitro digestive characteristics of grass carp (Ctenopharyngodon Idellus) Dual-frequency ultrasonic oxidation of cyanobacterial toxins (MC-LR and MC-RR) at drinking water resources: Assessment of analytical methods and ultrasonic reactor configuration Piezocatalysis-combined advanced oxidation processes for organic pollutant degradation in water system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1