{"title":"Discovery of the therapeutic potential of naltriben against glutamate-induced neurotoxicity.","authors":"Hyomin Ahn, Hyomin Lee, Wonseok Choi, Hyebin Lee, Kang-Gon Lee, Inchan Youn, Wooyoung Hur, Sungmin Han, Chiman Song","doi":"10.1016/j.neuint.2025.105928","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate-induced neuronal death is associated with neurodegeneration including cerebral ischemia. Several μ-opioid receptor antagonists exhibit a neuroprotective activity and have been considered as a potential therapeutic option for neurodegenerative disorders. For the first time, our current study unveiled the neuroprotective activity of selective δ-opioid receptor antagonists. A potent, selective δ-opioid receptor antagonist naltriben, also known as a potent TRPM7 agonist, displayed the prominent protective effect against glutamate-induced toxicity through opioid receptor-independent, TRPM7-independent mechanisms in HT22 cells. Naltriben activated Nrf2 pathway, and alleviated glutamate-induced Ca<sup>2+</sup> influx, ROS production, and apoptosis. Moreover, intraperitoneal administration of naltriben at 20 mg/kg greatly reduced the infarct volume in the subcortical photothrombotic ischemia mouse model in vivo. The neuroprotective activity of naltriben was enhanced by a longer pretreatment, indicating that like Nrf2 activators, naltriben also requires the cellular priming for its full protective effects. Together, these results suggested naltriben as a potential therapeutic agent in conditions related with glutamate-induced neurotoxicity.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105928"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuint.2025.105928","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamate-induced neuronal death is associated with neurodegeneration including cerebral ischemia. Several μ-opioid receptor antagonists exhibit a neuroprotective activity and have been considered as a potential therapeutic option for neurodegenerative disorders. For the first time, our current study unveiled the neuroprotective activity of selective δ-opioid receptor antagonists. A potent, selective δ-opioid receptor antagonist naltriben, also known as a potent TRPM7 agonist, displayed the prominent protective effect against glutamate-induced toxicity through opioid receptor-independent, TRPM7-independent mechanisms in HT22 cells. Naltriben activated Nrf2 pathway, and alleviated glutamate-induced Ca2+ influx, ROS production, and apoptosis. Moreover, intraperitoneal administration of naltriben at 20 mg/kg greatly reduced the infarct volume in the subcortical photothrombotic ischemia mouse model in vivo. The neuroprotective activity of naltriben was enhanced by a longer pretreatment, indicating that like Nrf2 activators, naltriben also requires the cellular priming for its full protective effects. Together, these results suggested naltriben as a potential therapeutic agent in conditions related with glutamate-induced neurotoxicity.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.