NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control.

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2025-01-06 DOI:10.1158/2326-6066.CIR-24-0298
Sara Majocchi, Pauline Lloveras, Lise Nouveau, Margaux Legrand, Alizee Viandier, Pauline Malinge, Maud Charreton, Cecile Raymond, Emily A Pace, Bjorn L Millard, L Anders Svensson, Vinardas Kelpšas, Nadia Anceriz, Susana Salgado-Pires, Bruno Daubeuf, Giovanni Magistrelli, Franck Gueneau, Valéry Moine, Krzysztof Masternak, Limin Shang, Nicolas Fischer, Walter G Ferlin
{"title":"NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control.","authors":"Sara Majocchi, Pauline Lloveras, Lise Nouveau, Margaux Legrand, Alizee Viandier, Pauline Malinge, Maud Charreton, Cecile Raymond, Emily A Pace, Bjorn L Millard, L Anders Svensson, Vinardas Kelpšas, Nadia Anceriz, Susana Salgado-Pires, Bruno Daubeuf, Giovanni Magistrelli, Franck Gueneau, Valéry Moine, Krzysztof Masternak, Limin Shang, Nicolas Fischer, Walter G Ferlin","doi":"10.1158/2326-6066.CIR-24-0298","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"OF1-OF19"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0298","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NI-3201是一种双特异性抗体,可介导pd - l1依赖性CD28对T细胞的共刺激,增强肿瘤控制。
尽管癌症免疫治疗取得了进展,例如靶向PD-1/PD-L1轴,但仍有相当数量的患者存在耐药或复发的肿瘤。t细胞共刺激分子选择性地与双特异性抗体结合,通过增强t细胞受体结合发生的信号1驱动激活,可能提供新的治疗选择。在这项研究中,我们报道了NI-3201的开发和临床前特性,NI-3201是一种在κλ体平台上产生的PD-L1×CD28双特异性抗体,旨在通过双重作用机制促进t细胞活性和抗肿瘤功能。我们证实,NI-3201阻断PD-L1/PD-1免疫检查点通路,并在参与PD-L1阳性肿瘤或免疫细胞时,有条件地通过CD28(信号2)提供t细胞共刺激。在含有信号1启动T细胞的系统中,NI-3201增强了有效的效应功能:在体外通过巨细胞病毒特异性T细胞的抗原特异性召回试验,在体内通过诱导肿瘤消退和肿瘤相关抗原表达MC38同基因小鼠模型的免疫记忆。当使用T细胞参与器提供合成信号1时,与NI-3201联合在两种人源化小鼠肿瘤模型中产生协同的T细胞依赖性细胞毒性和有效的抗肿瘤活性。非人灵长类动物安全性评估显示,在药理学活性剂量下,良好的耐受性和药代动力学。定量系统药理学模型预测NI-3201暴露会导致患者的抗肿瘤活性,但这仍有待研究。综上所述,本研究提示,通过PD-L1阻断与安全有效的CD28共刺激相结合,NI-3201具有改善癌症免疫治疗结果的潜力,并计划将NI-3201用于PD-L1+实体瘤的临床开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
A bifunctional antibody targeting PD-1 and TGF-β signaling has antitumor activity in combination with radiotherapy and attenuates radiation-induced lung injury. Different PD-L1 Assays Reveal Distinct Immunobiology and Clinical Outcomes in Urothelial Cancer. PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function. PKCδ germline variants and genetic deletion in mice augment antitumor immunity through regulation of myeloid cells. In situ detection of individual classical MHC-I gene products in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1