Cortical excitability on sleep deprivation measured by transcranial magnetic stimulation: A systematic review and meta-analysis

IF 3.5 3区 医学 Q2 NEUROSCIENCES Brain Research Bulletin Pub Date : 2025-02-01 DOI:10.1016/j.brainresbull.2025.111190
Yihui Zhang , Yuan Shi , Ye Zhang, Jian Jiao, Xiangdong Tang
{"title":"Cortical excitability on sleep deprivation measured by transcranial magnetic stimulation: A systematic review and meta-analysis","authors":"Yihui Zhang ,&nbsp;Yuan Shi ,&nbsp;Ye Zhang,&nbsp;Jian Jiao,&nbsp;Xiangdong Tang","doi":"10.1016/j.brainresbull.2025.111190","DOIUrl":null,"url":null,"abstract":"<div><div>Sleep deprivation is a common public problem, and researchers speculated its neurophysiological mechanisms related to cortical excitatory and inhibitory activity. Recently, transcranial magnetic stimulation combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) have been used to assess cortical excitability in sleep-deprived individuals, but the results were inconsistent. Therefore, we conducted a meta-analysis to summarize relevant TMS-evoked indices of excitability and inhibition for exploring the cortical effects of sleep deprivation. In TMS-EMG studies, short-interval cortical inhibition (SICI) significantly decreased in sleep-deprived subjects; while the intracortical facilitation (ICF), resting motor threshold (RMT), and cortical silent period (CSP) were not significant compared to healthy controls. In TMS-EEG studies, the amplitude and slope of TMS-evoked potential (TEP) increased in sleep-deprived subjects. This study indicated that cortical inhibition decreased following sleep deprivation based on the TMS-EMG results and cortical excitability enhanced in the TMS-EEG results, supporting the disturbance of cortical excitability in sleep-deprived individuals.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"221 ","pages":"Article 111190"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep deprivation is a common public problem, and researchers speculated its neurophysiological mechanisms related to cortical excitatory and inhibitory activity. Recently, transcranial magnetic stimulation combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) have been used to assess cortical excitability in sleep-deprived individuals, but the results were inconsistent. Therefore, we conducted a meta-analysis to summarize relevant TMS-evoked indices of excitability and inhibition for exploring the cortical effects of sleep deprivation. In TMS-EMG studies, short-interval cortical inhibition (SICI) significantly decreased in sleep-deprived subjects; while the intracortical facilitation (ICF), resting motor threshold (RMT), and cortical silent period (CSP) were not significant compared to healthy controls. In TMS-EEG studies, the amplitude and slope of TMS-evoked potential (TEP) increased in sleep-deprived subjects. This study indicated that cortical inhibition decreased following sleep deprivation based on the TMS-EMG results and cortical excitability enhanced in the TMS-EEG results, supporting the disturbance of cortical excitability in sleep-deprived individuals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经颅磁刺激测量睡眠剥夺后皮层兴奋性:系统回顾和荟萃分析。
睡眠不足是一个常见的公共问题,研究人员推测其神经生理机制与大脑皮层的兴奋和抑制活动有关。最近,经颅磁刺激结合肌电图(TMS-EMG)和脑电图(TMS-EEG)被用于评估睡眠不足者的大脑皮层兴奋性,但结果并不一致。因此,我们进行了一项荟萃分析,总结了相关的 TMS 诱发兴奋性和抑制性指数,以探讨睡眠不足对大脑皮层的影响。在 TMS-EEG 研究中,睡眠剥夺受试者的短间隙皮层抑制(SICI)明显降低;而皮层内促进(ICF)、静息运动阈值(RMT)和皮层沉默期(CSP)与健康对照组相比无显著差异。在 TMS-EEG 研究中,睡眠不足的受试者 TMS 诱发电位(TEP)的振幅和斜率均有所增加。这项研究表明,根据 TMS-EEG 的结果,睡眠剥夺后大脑皮层的抑制作用减弱,而 TMS-EEG 的结果显示大脑皮层的兴奋性增强,这支持了睡眠剥夺者大脑皮层兴奋性的紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
期刊最新文献
Exosome-based platforms for treatment of multiple sclerosis Unveiling the brain mechanism underlying depression: 12 Years of insights from bibliometric and visualization analysis Addressing myelination disorders: Novel strategies using human 3D peripheral nerve model Neural Mechanisms of Tinnitus:An Exploration from the Perspective of Varying Severity Levels. The Antioxidant Role of Aromatic Plant Extracts in Managing Neurodegenerative Diseases: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1