{"title":"The Antioxidant Role of Aromatic Plant Extracts in Managing Neurodegenerative Diseases: A Comprehensive Review.","authors":"Youyang Zhu, Miao Tian, Shiyu Lu, Yuliang Qin, Ting Zhao, Hongling Shi, Zhaofu Li, Dongdong Qin","doi":"10.1016/j.brainresbull.2025.111253","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases (NDDs) are a class of cognitive and motor disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), and others. They are caused by lesions in cells and tissues of the central nervous system, resulting in corresponding dysfunctions and consequent decline in cognitive and motor functions. Neural tissues are extremely vulnerable to oxidative stress, which plays critical biological roles in NDDs. Aromatic compounds are found extensively in natural plants and have substantial effects of anti-oxidative stress damage, which not only have a wide range of research applications in cosmetics, foods, etc., but are also frequently utilized in the treatment of various central nervous system diseases. This review summarizes the relevant oxidative stress mechanisms in NDDs (AD, PD, HD, and ALS) and reviews aromatic compounds such as polyphenols, terpenoids, and flavonoids that can be used in the management of neurodegenerative diseases, as well as their specific mechanisms of antioxidant action. This review will serve as a reference for future experimental studies on neurodegenerative illnesses while also offering fresh insights into clinical therapy.</p>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":" ","pages":"111253"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainresbull.2025.111253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases (NDDs) are a class of cognitive and motor disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), and others. They are caused by lesions in cells and tissues of the central nervous system, resulting in corresponding dysfunctions and consequent decline in cognitive and motor functions. Neural tissues are extremely vulnerable to oxidative stress, which plays critical biological roles in NDDs. Aromatic compounds are found extensively in natural plants and have substantial effects of anti-oxidative stress damage, which not only have a wide range of research applications in cosmetics, foods, etc., but are also frequently utilized in the treatment of various central nervous system diseases. This review summarizes the relevant oxidative stress mechanisms in NDDs (AD, PD, HD, and ALS) and reviews aromatic compounds such as polyphenols, terpenoids, and flavonoids that can be used in the management of neurodegenerative diseases, as well as their specific mechanisms of antioxidant action. This review will serve as a reference for future experimental studies on neurodegenerative illnesses while also offering fresh insights into clinical therapy.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.