Glucuronoxylomannan (GXM) modulates macrophage proliferation and apoptosis through the STAT1 signaling pathway.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Biology International Pub Date : 2025-01-06 DOI:10.1002/cbin.12267
Youming Huang, Sujing Li, Yan Teng, Xiaoxia Ding, Danfeng Xu, Xianhong Yang, Yong Yu, Yibin Fan
{"title":"Glucuronoxylomannan (GXM) modulates macrophage proliferation and apoptosis through the STAT1 signaling pathway.","authors":"Youming Huang, Sujing Li, Yan Teng, Xiaoxia Ding, Danfeng Xu, Xianhong Yang, Yong Yu, Yibin Fan","doi":"10.1002/cbin.12267","DOIUrl":null,"url":null,"abstract":"<p><p>cryptococcus neoformans (C. neoformans) is a crucial opportunistic fungus that possesses an encapsulated fungal pathogen. The cryptococcal capsule is mainly composed of the polysaccharide glucuronoxylomannan (GXM). Macrophages form the first-line innate defense against cryptococcosis; however, the underlying mechanism remains unclear. In this study, GXM-treated RAW264.7 macrophages showed a notably reduced survival rate and increased apoptosis, accompanied by the promoted inducible nitric oxide synthase (iNOS) expression and NO production. Signal transducer and activator of transcription 1 (STAT1) expression was also found to be directly proportional to GXM concentration; STAT1 knockdown could alleviate GXM-induced proliferation decrease and apoptosis increase of macrophages, as well as reduce M1 polarization, iNOS expression and NO release. In conclusion, this study concluded that GXM was the main virulence factor of C. neoformans, which is critical in determining the mechanism of GXM-mediated protective immune response postinfection. The STAT1 signal pathway mediates the effect of GXM stimulation on macrophages, potentially providing a reference for further understanding the biological role of GXM.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.12267","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

cryptococcus neoformans (C. neoformans) is a crucial opportunistic fungus that possesses an encapsulated fungal pathogen. The cryptococcal capsule is mainly composed of the polysaccharide glucuronoxylomannan (GXM). Macrophages form the first-line innate defense against cryptococcosis; however, the underlying mechanism remains unclear. In this study, GXM-treated RAW264.7 macrophages showed a notably reduced survival rate and increased apoptosis, accompanied by the promoted inducible nitric oxide synthase (iNOS) expression and NO production. Signal transducer and activator of transcription 1 (STAT1) expression was also found to be directly proportional to GXM concentration; STAT1 knockdown could alleviate GXM-induced proliferation decrease and apoptosis increase of macrophages, as well as reduce M1 polarization, iNOS expression and NO release. In conclusion, this study concluded that GXM was the main virulence factor of C. neoformans, which is critical in determining the mechanism of GXM-mediated protective immune response postinfection. The STAT1 signal pathway mediates the effect of GXM stimulation on macrophages, potentially providing a reference for further understanding the biological role of GXM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
葡萄糖醛酸甘露聚糖(Glucuronoxylomannan, GXM)通过STAT1信号通路调节巨噬细胞增殖和凋亡。
新型隐球菌(隐球菌)是一种重要的机会性真菌,具有被封装的真菌病原体。隐球菌胶囊主要由葡萄糖醛酸甘露聚糖(glucuronoxylomannan, GXM)多糖组成。巨噬细胞形成抵抗隐球菌病的第一线先天防御;然而,其潜在机制尚不清楚。在本研究中,gxm处理的RAW264.7巨噬细胞存活率明显降低,细胞凋亡增加,诱导型一氧化氮合酶(iNOS)表达和NO生成增加。转录信号传导和激活因子1 (STAT1)的表达也与GXM浓度成正比;STAT1敲低可减轻gxm诱导的巨噬细胞增殖减少和凋亡增加,减少M1极化、iNOS表达和NO释放。综上所述,本研究认为GXM是新生梭菌的主要毒力因子,这对于确定GXM介导的感染后保护性免疫反应机制至关重要。STAT1信号通路介导GXM刺激巨噬细胞的作用,可能为进一步了解GXM的生物学作用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
期刊最新文献
Caveolae Modulate the Activity of LRRC8-Mediated VRAC by the Structural Membrane Protein Caveolin-1. Macrophage-to-Myofibroblast Transition Contributes to Cutaneous Scarring Formation Through the TGF-β/Smad3 Signaling Pathways. The Alleviative Effect of Sodium Butyrate on Dexamethasone-Induced Skeletal Muscle Atrophy. Issue Information Regulation of N-Glycosylation of CDNF on Its Protein Stability and Function in Hypoxia/Reoxygenation Model of H9C2 Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1