{"title":"Solid dispersion of alectinib HCl: preclinical evaluation for improving bioavailability and establishing an IVIVC model.","authors":"Sumit Kumar Saha, Vipin Arya, Ajinkya Jadhav, Some Jhanana Kailash, Bala Krishna Panigrahy, Amita Joshi, Romi Singh, Kiran Dubey","doi":"10.1080/03639045.2024.2447276","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Alectinib HCl (ALB-HCl) is a BCS class IV molecule with low solubility and low oral bioavailability. Owing to its low bioavailability, a high dose of ALB-HCl is recommended with food to meet clinical efficacy. Thus, there is a need for a delivery system to overcome the bioavailability concerns.</p><p><strong>Methods: </strong>Three solid dispersion (SD) formulations (I, II, and III) were evaluated for <i>in-vitro</i> dissolution and <i>in-vivo</i> pharmacokinetics (PK) study in Wistar rats. An <i>in-vitro</i> and <i>in-vivo</i> correlation (IVIVC) model was developed to establish a relationship between <i>in-vitro</i> dissolution data and <i>in-vivo</i> PK data. The formulations were subjected to stability studies.</p><p><strong>Results: </strong>All formulations showed enhanced dissolution in all the media except Formulation I in FaSSIF media. <i>In-vivo</i> PK studies displayed that Formulation I was inferior to API alone. Formulations II and III (amorphous SD [ASD]) exhibited two-fold higher C<sub>max</sub> and AUC<sub>0-last</sub> than API alone. Level A IVIVC model was established for C<sub>max</sub> and AUC<sub>0-last</sub> with an acceptable % prediction error (PE). When evaluated for external predictability, the model was found validated for C<sub>max</sub> (% PE <10%), however, it was inconclusive for AUC<sub>0-last</sub> (%PE -14.03). Stability studies showed ASD formulations were stable during storage.</p><p><strong>Conclusion: </strong>A stable ASD formulation of ALB-HCl was successfully developed with improved bioavailability. Developing an IVIVC model can act as a surrogate to predict <i>in-vivo</i> performance. The selection of formulation components in ASD shall be rationalized for bioavailability and stability before clinical evaluation.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-14"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2447276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Alectinib HCl (ALB-HCl) is a BCS class IV molecule with low solubility and low oral bioavailability. Owing to its low bioavailability, a high dose of ALB-HCl is recommended with food to meet clinical efficacy. Thus, there is a need for a delivery system to overcome the bioavailability concerns.
Methods: Three solid dispersion (SD) formulations (I, II, and III) were evaluated for in-vitro dissolution and in-vivo pharmacokinetics (PK) study in Wistar rats. An in-vitro and in-vivo correlation (IVIVC) model was developed to establish a relationship between in-vitro dissolution data and in-vivo PK data. The formulations were subjected to stability studies.
Results: All formulations showed enhanced dissolution in all the media except Formulation I in FaSSIF media. In-vivo PK studies displayed that Formulation I was inferior to API alone. Formulations II and III (amorphous SD [ASD]) exhibited two-fold higher Cmax and AUC0-last than API alone. Level A IVIVC model was established for Cmax and AUC0-last with an acceptable % prediction error (PE). When evaluated for external predictability, the model was found validated for Cmax (% PE <10%), however, it was inconclusive for AUC0-last (%PE -14.03). Stability studies showed ASD formulations were stable during storage.
Conclusion: A stable ASD formulation of ALB-HCl was successfully developed with improved bioavailability. Developing an IVIVC model can act as a surrogate to predict in-vivo performance. The selection of formulation components in ASD shall be rationalized for bioavailability and stability before clinical evaluation.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.