Characterization of the hepatic flora and metabolome in nonalcoholic fatty liver disease.

IF 4 2区 生物学 Q2 MICROBIOLOGY Frontiers in Microbiology Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1528258
Hua Jiang, Hui Wang, Yangfan Guo, Yankun Zhu, Hui Dai, Chenchen Liang, Jianpeng Gao
{"title":"Characterization of the hepatic flora and metabolome in nonalcoholic fatty liver disease.","authors":"Hua Jiang, Hui Wang, Yangfan Guo, Yankun Zhu, Hui Dai, Chenchen Liang, Jianpeng Gao","doi":"10.3389/fmicb.2024.1528258","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>The purpose of this study was to examine the hepatic bacterial composition and metabolome characteristics of patients with NAFLD using 16S rDNA sequencing and metabolomics. The results of the study revealed substantial differences in hepatic bacterial composition and metabolites between the NAFLD group and the control group. These differences were used to identify potential biomarkers that could be employed to diagnose NAFLD.</p><p><strong>Subjects/methods: </strong>Liver tissues from 13 patients in the NAFLD group and 12 patients in the control group were collected for microbiota examination.</p><p><strong>Results: </strong>The bacterial DNA profiles of the liver were significantly different between NAFLD patients and controls. NAFLD patients exhibited an enrichment of Enterobacterales, Mycobacteriales, Pseudomonadales, Flavobacteriales and Xanthomonadales, Sphingomonadales, Lysobact, which was characterised by a lack of erales. At the genus level, the abundance values of <i>Escherichia</i>-<i>Shigella</i>, <i>Rhodococcus</i>, and <i>Chryseobacterium</i> in the NAFLD group were significantly elevated, while the abundance values of <i>Stenotrophomonas</i>, <i>Lawsonella</i> and <i>Sphingobium</i> were significantly reduced. A total of 402 distinct metabolites were identified between the two groups, with 78 metabolites that were up-regulated and 14 metabolites that were down-regulated. The enrichment of metabolic pathways indicated that linoleic acid metabolism was the most significant contributor to the metabolic differences, and lipid metabolism was substantially differentiated. The hepatic metabolite levels were substantially correlated with the changes in hepatic microflora, as demonstrated by the correlation analysis.</p><p><strong>Conclusion: </strong>Differences in pathogenesis and host physiological function of NAFLD may be attributed to the hepatic flora and metabolomic characteristics. In the future, this presents new opportunities for the investigation of prospective diagnostic and therapeutic targets for NAFLD.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1528258"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1528258","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: The purpose of this study was to examine the hepatic bacterial composition and metabolome characteristics of patients with NAFLD using 16S rDNA sequencing and metabolomics. The results of the study revealed substantial differences in hepatic bacterial composition and metabolites between the NAFLD group and the control group. These differences were used to identify potential biomarkers that could be employed to diagnose NAFLD.

Subjects/methods: Liver tissues from 13 patients in the NAFLD group and 12 patients in the control group were collected for microbiota examination.

Results: The bacterial DNA profiles of the liver were significantly different between NAFLD patients and controls. NAFLD patients exhibited an enrichment of Enterobacterales, Mycobacteriales, Pseudomonadales, Flavobacteriales and Xanthomonadales, Sphingomonadales, Lysobact, which was characterised by a lack of erales. At the genus level, the abundance values of Escherichia-Shigella, Rhodococcus, and Chryseobacterium in the NAFLD group were significantly elevated, while the abundance values of Stenotrophomonas, Lawsonella and Sphingobium were significantly reduced. A total of 402 distinct metabolites were identified between the two groups, with 78 metabolites that were up-regulated and 14 metabolites that were down-regulated. The enrichment of metabolic pathways indicated that linoleic acid metabolism was the most significant contributor to the metabolic differences, and lipid metabolism was substantially differentiated. The hepatic metabolite levels were substantially correlated with the changes in hepatic microflora, as demonstrated by the correlation analysis.

Conclusion: Differences in pathogenesis and host physiological function of NAFLD may be attributed to the hepatic flora and metabolomic characteristics. In the future, this presents new opportunities for the investigation of prospective diagnostic and therapeutic targets for NAFLD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Proteomic and metabolomic profiling of plasma uncovers immune responses in patients with Long COVID-19. Current trends and future directions in probiotics research for HIV/AIDS. Antibiotic legacies shape the temperature response of soil microbial communities. Alterations in the gut microbiome and metabolism with doxorubicin-induced heart failure severity. An experimental chimeric hepatitis E virus vaccine elicits both local and systemic immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1