Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Biomaterials Science, Polymer Edition Pub Date : 2025-01-06 DOI:10.1080/09205063.2024.2439668
Vinita Patole, Dhaneshwari Swami, Ganesh Ingavle, Isha Behere, Divya Ottoor, Nikita Vyawahare, Abhishek Jha, Sanjeevani Deshkar, Vaishali Undale, Avinash Sanap, Supriya Kheur, Avinash Kumar
{"title":"Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model.","authors":"Vinita Patole, Dhaneshwari Swami, Ganesh Ingavle, Isha Behere, Divya Ottoor, Nikita Vyawahare, Abhishek Jha, Sanjeevani Deshkar, Vaishali Undale, Avinash Sanap, Supriya Kheur, Avinash Kumar","doi":"10.1080/09205063.2024.2439668","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. <i>In vitro</i>, <i>in ovo</i>, and <i>in vivo</i> characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. <i>In vivo</i> wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group (<i>p</i> < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-34"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2439668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. In vitro, in ovo, and in vivo characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. In vivo wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group (p < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
期刊最新文献
Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model. Rapidly self-crosslinking sodium alginate hydrogel for infected wounds. Zein-based nanoparticulate systems: a journey through fabrication, targeting strategies and biomedical applications. Correction. Gene expression and hormonal signaling in osteoporosis: from molecular mechanisms to clinical breakthroughs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1