Circular RNA WRNIP1 activates the PI3K-AKT and ERK1/2 signaling pathways by binding to miR-129-5p/IGF2 axis and facilitates ovarian follicle development in chickens
Xiyu Zhao , Yuanhang Wei , Xinyan Li , Xinghong Yu , Zhenyu Lei , Yao Zhang , Shunshun Han , Huadong Yin , Can Cui
{"title":"Circular RNA WRNIP1 activates the PI3K-AKT and ERK1/2 signaling pathways by binding to miR-129-5p/IGF2 axis and facilitates ovarian follicle development in chickens","authors":"Xiyu Zhao , Yuanhang Wei , Xinyan Li , Xinghong Yu , Zhenyu Lei , Yao Zhang , Shunshun Han , Huadong Yin , Can Cui","doi":"10.1016/j.psj.2024.104757","DOIUrl":null,"url":null,"abstract":"<div><div>The healthy and orderly development of ovarian follicles is the basic premise to maintain normal and continuous egg production of chickens. Emerging researches continue to reveal the crucial functions of circular RNAs (<strong>circRNAs</strong>) involved in follicle development. In the present study, a novel circular RNA WRNIP1 (<strong>circWRNIP1</strong>) with higher abundance in healthy follicles than in atretic follicles was identified, suggesting its important regulatory role in follicle selection and maturation. In this study, we demonstrate that circWRNIP1 promotes chicken ovarian follicle development by enhancing granulosa cell proliferation and inhibiting apoptosis. Furthermore, we validated the targeting relationships between circWRNIP1 and miR-129-5p, as well as between miR-129-5p and IGF2. Mechanistically, through co-transfection experiments, we show that circWRNIP1 activates the PI3K-AKT and ERK1/2 signaling pathways via the miR-129-5p/IGF2 axis. The present study provides new insights into the downstream molecular mechanism of circRNAs regulating follicle development, and is expected to provide reliable targets for the subsequent establishment of new molecular breeding strategies.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 2","pages":"Article 104757"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003257912401335X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The healthy and orderly development of ovarian follicles is the basic premise to maintain normal and continuous egg production of chickens. Emerging researches continue to reveal the crucial functions of circular RNAs (circRNAs) involved in follicle development. In the present study, a novel circular RNA WRNIP1 (circWRNIP1) with higher abundance in healthy follicles than in atretic follicles was identified, suggesting its important regulatory role in follicle selection and maturation. In this study, we demonstrate that circWRNIP1 promotes chicken ovarian follicle development by enhancing granulosa cell proliferation and inhibiting apoptosis. Furthermore, we validated the targeting relationships between circWRNIP1 and miR-129-5p, as well as between miR-129-5p and IGF2. Mechanistically, through co-transfection experiments, we show that circWRNIP1 activates the PI3K-AKT and ERK1/2 signaling pathways via the miR-129-5p/IGF2 axis. The present study provides new insights into the downstream molecular mechanism of circRNAs regulating follicle development, and is expected to provide reliable targets for the subsequent establishment of new molecular breeding strategies.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.